- 相關(guān)推薦
5年級數(shù)學(xué)手抄報圖片
數(shù)學(xué)在我們的學(xué)習(xí)生涯中是一門很重要的學(xué)科,數(shù)學(xué)對于我們生活中的各種貢獻也很大,我們的生活與數(shù)學(xué)也是息息相關(guān)的,如果我們想要更好的生活,那么我們一定要學(xué)好數(shù)學(xué)。下面是小編帶來的是5年級數(shù)學(xué)手抄報圖片,希望對您有幫助。
定義
亞里士多德把數(shù)學(xué)定義為“數(shù)量科學(xué)”,這個定義直到18世紀(jì)。從19世紀(jì)開始,數(shù)學(xué)研究越來越嚴(yán)格,開始涉及與數(shù)量和量度無明確關(guān)系的群論和投影幾何等抽象主題,數(shù)學(xué)家和哲學(xué)家開始提出各種新的定義。這些定義中的一些強調(diào)了大量數(shù)學(xué)的演繹性質(zhì),一些強調(diào)了它的抽象性,一些強調(diào)數(shù)學(xué)中的某些話題。今天,即使在專業(yè)人士中,對數(shù)學(xué)的定義也沒有達成共識。數(shù)學(xué)是否是藝術(shù)或科學(xué),甚至沒有一致意見。[8]許多專業(yè)數(shù)學(xué)家對數(shù)學(xué)的定義不感興趣,或者認為它是不可定義的。有些只是說,“數(shù)學(xué)是數(shù)學(xué)家做的!
數(shù)學(xué)定義的三個主要類型被稱為邏輯學(xué)家,直覺主義者和形式主義者,每個都反映了不同的哲學(xué)思想學(xué)派。都有嚴(yán)重的問題,沒有人普遍接受,沒有和解似乎是可行的。
數(shù)學(xué)邏輯的早期定義是本杰明·皮爾士(Benjamin Peirce)的“得出必要結(jié)論的科學(xué)”(1870)。在Principia Mathematica,Bertrand Russell和Alfred North Whitehead提出了被稱為邏輯主義的哲學(xué)程序,并試圖證明所有的數(shù)學(xué)概念,陳述和原則都可以用符號邏輯來定義和證明。數(shù)學(xué)的邏輯學(xué)定義是羅素的“所有數(shù)學(xué)是符號邏輯”(1903)。
直覺主義定義,從數(shù)學(xué)家L.E.J. Brouwer,識別具有某些精神現(xiàn)象的數(shù)學(xué)。直覺主義定義的一個例子是“數(shù)學(xué)是一個接著一個進行構(gòu)造的心理活動”。直觀主義的特點是它拒絕根據(jù)其他定義認為有效的一些數(shù)學(xué)思想。特別是,雖然其他數(shù)學(xué)哲學(xué)允許可以被證明存在的對象,即使它們不能被構(gòu)造,但直覺主義只允許可以實際構(gòu)建的數(shù)學(xué)對象。
正式主義定義用其符號和操作規(guī)則來確定數(shù)學(xué)。 Haskell Curry將數(shù)學(xué)簡單地定義為“正式系統(tǒng)的科學(xué)”。[33]正式系統(tǒng)是一組符號,或令牌,還有一些規(guī)則告訴令牌如何組合成公式。在正式系統(tǒng)中,公理一詞具有特殊意義,與“不言而喻的真理”的普通含義不同。在正式系統(tǒng)中,公理是包含在給定的正式系統(tǒng)中的令牌的組合,而不需要使用系統(tǒng)的規(guī)則導(dǎo)出。
結(jié)構(gòu)
許多如數(shù)、函數(shù)、幾何等的數(shù)學(xué)對象反應(yīng)出了定義在其中連續(xù)運算或關(guān)系的內(nèi)部結(jié)構(gòu)。數(shù)學(xué)就研究這些結(jié)構(gòu)的性質(zhì),例如:數(shù)論研究整數(shù)在算數(shù)運算下如何表示。此外,不同結(jié)構(gòu)卻有著相似的性質(zhì)的事情時常發(fā)生,這使得通過進一步的抽象,然后通過對一類結(jié)構(gòu)用公理描述他們的狀態(tài)變得可能,需要研究的就是在所有的結(jié)構(gòu)里找出滿足這些公理的結(jié)構(gòu)。因此,我們可以學(xué)習(xí)群、環(huán)、域和其他的抽象系統(tǒng)。把這些研究(通過由代數(shù)運算定義的結(jié)構(gòu))可以組成抽象代數(shù)的領(lǐng)域。由于抽象代數(shù)具有極大的通用性,它時?梢员粦(yīng)用于一些似乎不相關(guān)的問題,例如一些古老的尺規(guī)作圖的問題終于使用了伽羅理論解決了,它涉及到域論和群論。代數(shù)理論的另外一個例子是線性代數(shù),它對其元素具有數(shù)量和方向性的向量空間做出了一般性的研究。這些現(xiàn)象表明了原來被認為不相關(guān)的幾何和代數(shù)實際上具有強力的相關(guān)性。組合數(shù)學(xué)研究列舉滿足給定結(jié)構(gòu)的數(shù)對象的方法。
5年級數(shù)學(xué)手抄報圖片2
數(shù)學(xué)(漢語拼音:shù xué;希臘語:μαθηματικ;英語:Mathematics),源自于古希臘語的μθημα(máthēma),其有學(xué)習(xí)、學(xué)問、科學(xué)之意。古希臘學(xué)者視其為哲學(xué)之起點,“學(xué)問的基礎(chǔ)”。另外,還有個較狹隘且技術(shù)性的意義——“數(shù)學(xué)研究”。即使在其語源內(nèi),其形容詞意義凡與學(xué)習(xí)有關(guān)的,亦會被用來指數(shù)學(xué)的。
其在英語的復(fù)數(shù)形式,及在法語中的復(fù)數(shù)形式+es成mathématiques,可溯至拉丁文的中性復(fù)數(shù)(Mathematica),由西塞羅譯自希臘文復(fù)數(shù)τα μαθηματικ?(ta mathēmatiká)。
在中國古代,數(shù)學(xué)叫作算術(shù),又稱算學(xué),最后才改為數(shù)學(xué)。中國古代的算術(shù)是六藝之一(六藝中稱為“數(shù)”)。
數(shù)學(xué)起源于人類早期的生產(chǎn)活動,古巴比倫人從遠古時代開始已經(jīng)積累了一定的數(shù)學(xué)知識,并能應(yīng)用實際問題。從數(shù)學(xué)本身看,他們的數(shù)學(xué)知識也只是觀察和經(jīng)驗所得,沒有綜合結(jié)論和證明,但也要充分肯定他們對數(shù)學(xué)所做出的`貢獻。
基礎(chǔ)數(shù)學(xué)的知識與運用是個人與團體生活中不可或缺的一部分。其基本概念的精煉早在古埃及、美索不達米亞及古印度內(nèi)的古代數(shù)學(xué)文本內(nèi)便可觀見。從那時開始,其發(fā)展便持續(xù)不斷地有小幅度的進展。但當(dāng)時的代數(shù)學(xué)和幾何學(xué)長久以來仍處于獨立的狀態(tài)。
代數(shù)學(xué)可以說是最為人們廣泛接受的“數(shù)學(xué)”?梢哉f每一個人從小時候開始學(xué)數(shù)數(shù)起,最先接觸到的數(shù)學(xué)就是代數(shù)學(xué)。而數(shù)學(xué)作為一個研究“數(shù)”的學(xué)科,代數(shù)學(xué)也是數(shù)學(xué)最重要的組成部分之一。幾何學(xué)則是最早開始被人們研究的數(shù)學(xué)分支。
直到16世紀(jì)的文藝復(fù)興時期,笛卡爾創(chuàng)立了解析幾何,將當(dāng)時完全分開的代數(shù)和幾何學(xué)聯(lián)系到了一起。從那以后,我們終于可以用計算證明幾何學(xué)的定理;同時也可以用圖形來形象的表示抽象的代數(shù)方程。而其后更發(fā)展出更加精微的微積分。
現(xiàn)時數(shù)學(xué)已包括多個分支。創(chuàng)立于二十世紀(jì)三十年代的法國的布爾巴基學(xué)派則認為:數(shù)學(xué),至少純數(shù)學(xué),是研究抽象結(jié)構(gòu)的理論。結(jié)構(gòu),就是以初始概念和公理出發(fā)的演繹系統(tǒng)。他們認為,數(shù)學(xué)有三種基本的母結(jié)構(gòu):代數(shù)結(jié)構(gòu)(群,環(huán),域,格……)、序結(jié)構(gòu)(偏序,全序……)、拓撲結(jié)構(gòu)(鄰域,極限,連通性,維數(shù)……)。
數(shù)學(xué)被應(yīng)用在很多不同的領(lǐng)域上,包括科學(xué)、工程、醫(yī)學(xué)和經(jīng)濟學(xué)等。數(shù)學(xué)在這些領(lǐng)域的應(yīng)用一般被稱為應(yīng)用數(shù)學(xué),有時亦會激起新的數(shù)學(xué)發(fā)現(xiàn),并促成全新數(shù)學(xué)學(xué)科的發(fā)展。數(shù)學(xué)家也研究純數(shù)學(xué),也就是數(shù)學(xué)本身,而不以任何實際應(yīng)用為目標(biāo)。雖然有許多工作以研究純數(shù)學(xué)為開端,但之后也許會發(fā)現(xiàn)合適的應(yīng)用。
具體的,有用來探索由數(shù)學(xué)核心至其他領(lǐng)域上之間的連結(jié)的子領(lǐng)域:由邏輯、集合論(數(shù)學(xué)基礎(chǔ))、至不同科學(xué)的經(jīng)驗上的數(shù)學(xué)(應(yīng)用數(shù)學(xué))、以較近代的對于不確定性的研究(混沌、模糊數(shù)學(xué))。
就縱度而言,在數(shù)學(xué)各自領(lǐng)域上的探索亦越發(fā)深入。
【5年級數(shù)學(xué)手抄報圖片】相關(guān)文章:
有關(guān)數(shù)學(xué)手抄報圖片07-28
數(shù)學(xué)問題手抄報圖片07-29
家風(fēng)圖片手抄報圖片07-07
手抄報圖片07-10
電腦手抄報圖片07-12
安全手抄報圖片09-01
手抄報圖片簡單又漂亮07-10
關(guān)于溺水的手抄報圖片07-10