亚洲色影视在线播放_国产一区+欧美+综合_久久精品少妇视频_制服丝袜国产网站

學(xué)習(xí)方法

高中數(shù)學(xué)的學(xué)習(xí)方法

時(shí)間:2023-12-13 08:03:13 學(xué)習(xí)方法 我要投稿

高中數(shù)學(xué)的學(xué)習(xí)方法5篇[精選]

  在平日的學(xué)習(xí)、工作和生活里,大家都在不斷地學(xué)習(xí),掌握學(xué)習(xí)方法,可以幫助大家更加高效的學(xué)習(xí)。那么,大家知道要怎樣正確高效的學(xué)習(xí)嗎?下面是小編收集整理的高中數(shù)學(xué)的學(xué)習(xí)方法,歡迎閱讀,希望大家能夠喜歡。

高中數(shù)學(xué)的學(xué)習(xí)方法5篇[精選]

高中數(shù)學(xué)的學(xué)習(xí)方法1

  制定計(jì)劃和奮斗目標(biāo)

  復(fù)習(xí)數(shù)學(xué)時(shí),要制定好計(jì)劃,不但要有本學(xué)期大的規(guī)劃,還要有每月、每周、每天的小計(jì)劃,計(jì)劃要與老師的復(fù)習(xí)計(jì)劃吻合,不能相互沖突,如按照老師的復(fù)習(xí)進(jìn)度,今天復(fù)習(xí)到什么知識(shí)點(diǎn),就應(yīng)該在今天之內(nèi)掌握該知識(shí)點(diǎn),加深對(duì)該知識(shí)點(diǎn)的理解,研究該知識(shí)點(diǎn)考查的不同側(cè)面、不同角度。

  在每天的復(fù)習(xí)計(jì)劃里,要留有一定的時(shí)間看課本,看筆記,回顧過去知識(shí)點(diǎn),思考老師當(dāng)天講了什么知識(shí),歸納當(dāng)天所學(xué)的知識(shí)?梢哉f,每天的習(xí)題可以少做,但這些歸納、反思、回顧是必不可少的。望你在制定計(jì)劃時(shí)注意。

  嚴(yán)防題海戰(zhàn)術(shù)

  做習(xí)題是為了鞏固知識(shí)、提高應(yīng)變能力、思維能力、計(jì)算能力。學(xué)數(shù)學(xué)要做一定量的習(xí)題,但學(xué)數(shù)學(xué)并不等于做題,在各種考試題中,有相當(dāng)?shù)牧?xí)題是靠簡(jiǎn)單的知識(shí)點(diǎn)的堆積,利用公理化知識(shí)體系的演繹而就能解決的,這些習(xí)題是要通過做一定量的習(xí)題達(dá)到對(duì)解題方法的展移而實(shí)現(xiàn)的.,但,隨著高考的改革,高考已把考查的重點(diǎn)放在創(chuàng)造型、能力型的考查上。

  因此要精做習(xí)題,注意知識(shí)的理解和靈活應(yīng)用,當(dāng)你做完一道習(xí)題后不訪自問:本題考查了什么知識(shí)點(diǎn)?什么方法?我們從中得到了解題的什么方法?這一類習(xí)題中有什么解題的通性?實(shí)現(xiàn)問題的完全解決我應(yīng)用了怎樣的解題策略?只有這樣才會(huì)培養(yǎng)自己的悟性與創(chuàng)造性,開發(fā)其創(chuàng)造力。也將在遇到即將來(lái)臨的期末考試和未來(lái)的高考題目中那些綜合性強(qiáng)的題目時(shí)可以有一個(gè)科學(xué)的方法解決它。

  歸納數(shù)學(xué)大思維

  數(shù)學(xué)學(xué)習(xí)其主要的目的是為了培養(yǎng)我們的創(chuàng)造性,培養(yǎng)我們處理事情、解決問題的能力,因此,對(duì)處理數(shù)學(xué)問題時(shí)的大策略、大思維的掌握顯得特別重要,在平時(shí)的學(xué)習(xí)時(shí)應(yīng)注重歸納它。在平時(shí)聽課時(shí),一個(gè)明知的學(xué)生,應(yīng)該聽老師對(duì)該題目的分析和歸納。但還有不少學(xué)生,不注意教師的分析,往往沉靜在老師講解的每一步計(jì)算、每一步推證過程。

  聽課是認(rèn)真,但費(fèi)力,聽完后是滿腦子的計(jì)算過程,支離破碎。老師的分析是引導(dǎo)學(xué)生思考,啟發(fā)學(xué)生自己設(shè)計(jì)出處理這些問題的大策略、大思維。當(dāng)教師解答習(xí)題時(shí),學(xué)生要用自己的計(jì)算和推理已經(jīng)知道老師要干什么。另外,當(dāng)題目的答案給出時(shí),并不代表問題的解答完畢,還要花一定的時(shí)間認(rèn)真總結(jié)、歸納理解記憶。要把這些解題策略全部納入自己的腦海成為永久地記憶,變?yōu)樽约航鉀Q這一類型問題的經(jīng)驗(yàn)和技能。同時(shí)也解決了學(xué)生中會(huì)聽課而不會(huì)做題目的壞毛病。

  積累考試經(jīng)驗(yàn)

  本學(xué)期每月初都有大的考試,加之每單元的單元測(cè)驗(yàn)和模擬考試有十幾次,抓住這些機(jī)會(huì),積累一定的考試經(jīng)驗(yàn),掌握一定的考試技巧,使自己應(yīng)有的水平在考試中得到充分的發(fā)揮。其實(shí),考試是單兵作戰(zhàn),它是考驗(yàn)一個(gè)人的承受能力、接受能力、解決問題等綜合能力的戰(zhàn)場(chǎng)。這些能力的只有在平時(shí)的考試中得到培養(yǎng)和訓(xùn)練。

高中數(shù)學(xué)的學(xué)習(xí)方法2

  課前預(yù)習(xí)

  一個(gè)老生常談的話題,也是提到學(xué)習(xí)方法必將的一個(gè),話雖老,雖舊,但仍然是不得不提。雖然大家都明白該這樣做,但是真正能夠做到課前預(yù)習(xí)的能有幾人,課前預(yù)習(xí)可以使我們提前了解將要學(xué)習(xí)的知識(shí),不至于到課上手足無(wú)措,加深我們聽課時(shí)的理解,從而能夠很快的吸收新知識(shí)。

  記筆記

  這里主要指的是課堂筆記,因?yàn)槊抗?jié)課的時(shí)間有限,所以老師將的東西一般都是精華部分,因此很有必要把它們記錄下來(lái),一來(lái)可以加深我們的理解,好記性不如爛筆頭嗎,二來(lái)可以方便我們以后復(fù)習(xí)查看。如果對(duì)課堂講述的知識(shí)不理解的.同學(xué)更應(yīng)該做筆記,以便課下細(xì)細(xì)琢磨,直到理解為止。

  課后復(fù)習(xí)

  同預(yù)習(xí)一樣,是個(gè)老生常談的話題,但也是行之有效的方法,課堂的幾十分鐘不足以使我們學(xué)習(xí)和消化所學(xué)知識(shí),需要我們?cè)谡n下進(jìn)行大量的練習(xí)與鞏固,才能真正掌握所學(xué)知識(shí)。

  涉獵課外習(xí)題

  想要在數(shù)學(xué)中有所建樹,取得好成績(jī),光靠課本上的知識(shí)是遠(yuǎn)遠(yuǎn)不夠的,因此我們需要多多涉獵一些課外習(xí)題,學(xué)習(xí)它們的解題思路和方法,如果實(shí)在不能理解,可以問問老師或者同學(xué)。

  學(xué)會(huì)歸類總結(jié)

  學(xué)習(xí)數(shù)學(xué)要記得東西很多,尤其是數(shù)學(xué)公式,而且知識(shí)還很散,通常解一道題需要各種公式的配合,如果單純的記憶每個(gè)公式,不但增加記憶量,而且容易忘,此時(shí)我們必須學(xué)會(huì)歸類總結(jié),把經(jīng)常搭配使用的公式等總結(jié)在一起記憶,這樣會(huì)大大的減少我們的記憶量,同時(shí)提高我們做題效率。

  建立糾錯(cuò)本

  我們?cè)趯W(xué)習(xí)數(shù)學(xué)的時(shí)候可能會(huì)經(jīng)常因?yàn)橥瑯右活愵}目而失分,自己也十分懊惱,其實(shí)有辦法可以解決這個(gè)問題,就是建立糾錯(cuò)本,幫我們經(jīng)常會(huì)出錯(cuò)的題目都集中在一起(當(dāng)然只要是做錯(cuò)過得都可以記錄上),然后空閑的時(shí)候看看,考試之前再看看,這樣考試的時(shí)候出現(xiàn)同類題目再出錯(cuò)的幾率就降低好多。

  寫考試總結(jié)

  寫考試總結(jié)是一個(gè)好習(xí)慣,考試總結(jié)可以幫我們找出學(xué)習(xí)之中不足之處,以及我們知識(shí)的薄弱環(huán)節(jié),從而及時(shí)的彌補(bǔ)不足,以及以后的學(xué)習(xí)方向。

高中數(shù)學(xué)的學(xué)習(xí)方法3

  抓要點(diǎn)提高學(xué)習(xí)效率。

  (1)抓教材處理。正所謂“萬(wàn)變不離其中”。要知道,教材始終是我們學(xué)習(xí)的根本依據(jù)。教學(xué)是活的,思維也是活的,學(xué)習(xí)能力是隨著知識(shí)的積累而同時(shí)形成的。我們要通過老師教學(xué),理解所學(xué)內(nèi)容在教材中的地位,并將前后知識(shí)聯(lián)系起來(lái),把握教材,才能掌握學(xué)習(xí)的主動(dòng)性。

  (2)抓問題暴露。對(duì)于那些典型的`問題,必須及時(shí)解決,而不能把問題遺留下來(lái),而要對(duì)遺留的問題及時(shí)、有針對(duì)地起來(lái),注重實(shí)效。

  (3)抓解題指導(dǎo)。要合理選擇簡(jiǎn)捷的運(yùn)算途徑,要根據(jù)問題的條件和要求合理地選擇運(yùn)算過程,抓住問題的關(guān)鍵突破口,提高自己的學(xué)習(xí)能力。(4)抓思維訓(xùn)練。數(shù)學(xué)的特點(diǎn)是具有高度的抽象性、邏輯性和廣泛的適用性,對(duì)能力要求較高。我們?cè)谄綍r(shí)的訓(xùn)練中,要注重一個(gè)思維的過程,學(xué)習(xí)能力是在不斷運(yùn)用中才能培養(yǎng)出來(lái)的。(5)抓40分鐘課堂效率。我們學(xué)習(xí)的大部分時(shí)間都在學(xué)校,如果不能很好地抓住課堂時(shí)間,而寄望于課下去補(bǔ),則會(huì)使學(xué)習(xí)效率大打折扣了。

  教授學(xué)生重要的數(shù)學(xué)思想方法

  對(duì)于學(xué)生和教師來(lái)說,如果不試著從數(shù)學(xué)的形式及演算中跳出來(lái),去掌握數(shù)學(xué)的本質(zhì)內(nèi)容,那么挫折就會(huì)變得更加嚴(yán)重。因此,高中數(shù)學(xué)的學(xué)習(xí),不能滿足于盲目地在題海中奮戰(zhàn),更加不能就題來(lái)論題。特別是高中階段的數(shù)學(xué)學(xué)習(xí),要特別注重掌握數(shù)學(xué)的思想方法。那么,什么是數(shù)學(xué)思想方法?筆者認(rèn)為,數(shù)學(xué)思想方法如果按層次分,可分為數(shù)學(xué)一般方法、邏輯學(xué)數(shù)學(xué)方法與數(shù)學(xué)思想方法。其中,數(shù)學(xué)一般方法主要是數(shù)學(xué)解題的具體方法及相關(guān)技能、技巧,比如高中數(shù)學(xué)里的配方法、換元法、待定系數(shù)法和判別式法等。

  邏輯學(xué)數(shù)學(xué)方法主要是指數(shù)學(xué)的思維方法,主要有分析法、綜合法、歸納法和試驗(yàn)法等。數(shù)學(xué)思想方法主要有函數(shù)與方程思想、化歸思想及數(shù)形結(jié)合思想等。通過對(duì)數(shù)學(xué)解題過程中最富有特色的典型智力活動(dòng)進(jìn)行分析和歸納,可以提煉出分析、解決數(shù)學(xué)問題的規(guī)律來(lái),也就是要先弄清問題,再擬定解題計(jì)劃,接著實(shí)現(xiàn)解題計(jì)劃,最后進(jìn)行回顧這四個(gè)階段。在數(shù)學(xué)教學(xué)中,教師要把好審題關(guān)、計(jì)算關(guān)及數(shù)學(xué)表達(dá)關(guān),要求學(xué)生對(duì)概念、公式和定理等知識(shí)點(diǎn)進(jìn)行準(zhǔn)確記憶,并能牢固掌握,還要學(xué)會(huì)運(yùn)用這些知識(shí)開展計(jì)算、證明和邏輯推理。

高中數(shù)學(xué)的學(xué)習(xí)方法4

  1、首先是精選題目,做到少而精。

  只有解決質(zhì)量高的、有代表性的題目才能達(dá)到事半功倍的效果。然而絕大多數(shù)的同學(xué)還沒有辨別、分析題目好壞的能力,這就需要在老師的指導(dǎo)下來(lái)選擇復(fù)習(xí)的練習(xí)題,以了解高考題的形式、難度。

  2、其次是分析題目。

  解答任何一個(gè)數(shù)學(xué)題目之前,都要先進(jìn)行分析。相對(duì)于比較難的題目,分析更顯得尤為重要。我們知道,解決數(shù)學(xué)問題實(shí)際上就是在題目的已知條件和待求結(jié)論中架起聯(lián)系的橋梁,也就是在分析題目中已知與待求之間差異的基礎(chǔ)上,化歸和消除這些差異。當(dāng)然在這個(gè)過程中也反映出對(duì)數(shù)學(xué)基礎(chǔ)知識(shí)掌握的熟練程度、理解程度和數(shù)學(xué)方法的靈活應(yīng)用能力。例如,許多三角方面的題目都是把角、函數(shù)名、結(jié)構(gòu)形式統(tǒng)一后就可以解決問題了,而選擇怎樣的三角公式也是成敗的關(guān)鍵。

  3、最后,題目總結(jié)。

  解題不是目的,我們是通過解題來(lái)檢驗(yàn)我們的學(xué)習(xí)效果,發(fā)現(xiàn)學(xué)習(xí)中的不足的,以便改進(jìn)和提高。因此,解題后的總結(jié)至關(guān)重要,這正是我們學(xué)習(xí)的大好機(jī)會(huì)。對(duì)于一道完成的題目,有以下幾個(gè)方面需要總結(jié):

  ①在知識(shí)方面,題目中涉及哪些概念、定理、公式等基礎(chǔ)知識(shí),在解題過程中是如何應(yīng)用這些知識(shí)的。

  ②在方法方面:如何入手的,用到了哪些解題方法、技巧,自己是否能夠熟練掌握和應(yīng)用。

 、勰懿荒馨呀忸}過程概括、歸納成幾個(gè)步驟(比如用數(shù)學(xué)歸納法證明題目就有很明顯的三個(gè)步驟)。

  ④能不能歸納出題目的類型,進(jìn)而掌握這類題目的解題通法(我們反對(duì)老師把現(xiàn)成的題目類型給學(xué)生,讓學(xué)生拿著題目套類型,但我們鼓勵(lì)學(xué)生自己總結(jié)、歸納題目類型)。

  高中數(shù)學(xué)導(dǎo)數(shù)的定義,公式及應(yīng)用總結(jié)

  導(dǎo)數(shù)的定義:

  當(dāng)自變量的增量Δx=x-x0,Δx→0時(shí)函數(shù)增量Δy=f(x)- f(x0)與自變量增量之比的極限存在且有限,就說函數(shù)f在x0點(diǎn)可導(dǎo),稱之為f在x0點(diǎn)的導(dǎo)數(shù)(或變化率)、

  函數(shù)y=f(x)在x0點(diǎn)的導(dǎo)數(shù)f'(x0)的幾何意義:表示函數(shù)曲線在P0[x0,f(x0)]點(diǎn)的切線斜率(導(dǎo)數(shù)的幾何意義是該函數(shù)曲線在這一點(diǎn)上的切線斜率)。

  一般地,我們得出用函數(shù)的導(dǎo)數(shù)來(lái)判斷函數(shù)的增減性(單調(diào)性)的法則:設(shè)y=f(x )在(a,b)內(nèi)可導(dǎo)。如果在(a,b)內(nèi),f'(x)>0,則f(x)在這個(gè)區(qū)間是單調(diào)增加的(該點(diǎn)切線斜率增大,函數(shù)曲線變得“陡峭”,呈上升狀)。如果在(a,b)內(nèi),f'(x)<0,則f(x)在這個(gè)區(qū)間是單調(diào)減小的。所以,當(dāng)f'(x)=0時(shí),y=f(x )有極大值或極小值,極大值中最大者是最大值,極小值中最小者是最小值

  求導(dǎo)數(shù)的步驟:

  求函數(shù)y=f(x)在x0處導(dǎo)數(shù)的步驟:

 、偾蠛瘮(shù)的增量Δy=f(x0+Δx)-f(x0)

  ②求平均變化率

 、廴O限,得導(dǎo)數(shù)。

  導(dǎo)數(shù)公式:

  ① C'=0(C為常數(shù)函數(shù));

 、 (x^n)'= nx^(n-1) (n∈Q___);熟記1/X的導(dǎo)數(shù);

  ③ (sinx)' = cosx;(cosx)' = - sinx;(tanx)'=1/(cosx)^2=(secx)^2=1+(tanx)^2 -(cotx)'=1/(sinx)^2=(cscx)^2=1+(cotx)^2 (secx)'=tanx·secx (cscx)'=-cotx·cscx (arcsinx)'=1/(1-x^2)^1/2 (arccosx)'=-1/(1-x^2)^1/2 (arctanx)'=1/(1+x^2) (arccotx)'=-1/(1+x^2) (arcsecx)'=1/(x(x^2-1)^1/2) (arccscx)'=-1/(x(x^2-1)^1/2) ④ (sinhx)'=hcoshx (coshx)'=-hsinhx (tanhx)'=1/(coshx)^2=(sechx)^2 (coth)'=-1/(sinhx)^2=-(cschx)^2 (sechx)'=-tanhx·sechx (cschx)'=-cothx·cschx (arsinhx)'=1/(x^2+1)^1/2 (arcoshx)'=1/(x^2-1)^1/2 (artanhx)'=1/(x^2-1) (x<1) xlna="" 、="">0,那么函數(shù)y=f(x)在這個(gè)區(qū)間內(nèi)單調(diào)遞增;如果f'(x)<0,那么函數(shù)y=f(x)在這個(gè)區(qū)間內(nèi)單調(diào)遞減,="">0是f(x)在此區(qū)間上為增函數(shù)的充分條件,而不是必要條件,如f(x)=x3在R內(nèi)是增函數(shù),但x=0時(shí)f'(x)=0。也就是說,如果已知f(x)為增函數(shù),解題時(shí)就必須寫f'(x)≥0。

  (2)求函數(shù)單調(diào)區(qū)間的步驟(不要按圖索驥緣木求魚這樣創(chuàng)新何言?1、定義最基礎(chǔ)求法2、復(fù)合函數(shù)單調(diào)性)

 、俅_定f(x)的.定義域;

 、谇髮(dǎo)數(shù);

  ③由(或)解出相應(yīng)的x的范圍、當(dāng)f'(x)>0時(shí),f(x)在相應(yīng)區(qū)間上是增函數(shù);當(dāng)f'(x)<0時(shí),f(x)在相應(yīng)區(qū)間上是減函數(shù)。--0,那么函數(shù)y=f(x)在這個(gè)區(qū)間內(nèi)單調(diào)遞減.-->--1)-->

  2、函數(shù)的極值

  (1)函數(shù)的極值的判定

 、偃绻趦蓚(cè)符號(hào)相同,則不是f(x)的極值點(diǎn);

  ②如果在附近的左右側(cè)符號(hào)不同,那么,是極大值或極小值、

  3、求函數(shù)極值的步驟

 、俅_定函數(shù)的定義域;

 、谇髮(dǎo)數(shù);

  ③在定義域內(nèi)求出所有的駐點(diǎn)與導(dǎo)數(shù)不存在的點(diǎn),即求方程及的所有實(shí)根;④檢查在駐點(diǎn)左右的符號(hào),如果左正右負(fù),那么f(x)在這個(gè)根處取得極大值;如果左負(fù)右正,那么f(x)在這個(gè)根處取得極小值、

  4、函數(shù)的最值

  (1)如果f(x)在[a,b]上的最大值(或最小值)是在(a,b)內(nèi)一點(diǎn)處取得的,顯然這個(gè)最大值(或最小值)同時(shí)是個(gè)極大值(或極小值),它是f(x)在(a,b)內(nèi)所有的極大值(或極小值)中最大的(或最小的),但是最值也可能在[a,b]的端點(diǎn)a或b處取得,極值與最值是兩個(gè)不同的概念;

  (2)求f(x)在[a,b]上的最大值與最小值的步驟①求f(x)在(a,b)內(nèi)的極值;②將f(x)的各極值與f(a),f(b)比較,其中最大的一個(gè)是最大值,最小的一個(gè)是最小值。

高中數(shù)學(xué)的學(xué)習(xí)方法5

  一、勤看書,學(xué)研究。

  有些“自我感覺良好”的學(xué)生,常輕視課本中基礎(chǔ)知識(shí)、基本技能和基本方法的學(xué)習(xí)與訓(xùn)練,經(jīng)常是知道怎么做就算了,而不去認(rèn)真演算書寫,但對(duì)難題很感興趣,以顯示自己的“水平”,重“量”輕“質(zhì)”,陷入題海,到正規(guī)作業(yè)或考試中不是演算出錯(cuò)就是中途“卡殼”,變成事倍功半。因此,同學(xué)們從高一開始,增強(qiáng)自己從課本入手進(jìn)行研究的意識(shí):預(yù)習(xí),復(fù)習(xí)?梢园衙織l定理、每道例題都當(dāng)作習(xí)題,認(rèn)真地重證、重解,并適當(dāng)加些批注(如數(shù)學(xué)符號(hào)在不同范疇的含義,不同領(lǐng)域之間的關(guān)系),舉個(gè)例子:x+y=0可以是二元一次方程,寫成y=-x又可看成一次函數(shù)。特別是可以通過對(duì)典型例題的講解分析,最后抽象出解決這類問題的數(shù)學(xué)思想和方法,并做好書面的解題后的反思,總結(jié)出解題的一般規(guī)律和特殊規(guī)律,以便推廣和靈活運(yùn)用。另外,希望你們要盡可能獨(dú)立解題,因?yàn)榍蠼膺^程,也是培養(yǎng)分析問題和解決問題能力的一個(gè)過程,同時(shí)更是一個(gè)研究過程。

  二、注重課堂,記好筆記。

  首先,在課堂教學(xué)中培養(yǎng)好的聽課習(xí)慣是很重要的。聽當(dāng)然是主要的,聽能使注意力集中,注意積極思考、分析問題,要把老師講的關(guān)鍵性部分聽懂、聽會(huì)。提高數(shù)學(xué)能力,鍛煉自己的思維,主要也是通過課堂來(lái)提高,要充分利用好課堂這塊陣地,學(xué)習(xí)數(shù)學(xué)的過程是活的,在隨著教學(xué)過程的發(fā)展而變化,尤其是當(dāng)老師注重能力教學(xué)的時(shí)候,教材是反映不出來(lái)的。數(shù)學(xué)能力是隨著知識(shí)的發(fā)生而同時(shí)形成的,無(wú)論是形成一個(gè)概念,掌握一條法則,會(huì)做一個(gè)習(xí)題,都應(yīng)該從不同的能力角度來(lái)培養(yǎng)和提高。課堂上通過老師的教學(xué),理解所學(xué)內(nèi)容在教材中的地位,弄清與前后知識(shí)的聯(lián)系等,只有把握住教材,才能掌握學(xué)習(xí)的主動(dòng)。

  其次,聽的時(shí)候不能光聽,為了往后復(fù)習(xí),應(yīng)適當(dāng)?shù)赜心康男缘挠浐霉P記,領(lǐng)會(huì)課上老師的主要精神與意圖。科學(xué)的記筆記可以提45鐘課堂效果。

  再次,如果數(shù)學(xué)課沒有一定的速度,那是一種無(wú)效學(xué)習(xí)。慢騰騰的學(xué)習(xí)是訓(xùn)練不出思維速度,訓(xùn)練不出思維的敏捷性,是培養(yǎng)不出數(shù)學(xué)能力的,這就要求在數(shù)學(xué)學(xué)習(xí)中一定要有節(jié)奏(有目的進(jìn)行訓(xùn)練),這樣久而久之,思維的敏捷性和數(shù)學(xué)能力會(huì)逐步提高。

  最后,在數(shù)學(xué)課堂中,老師一般少不了提問與板演,有時(shí)還伴隨著問題討論,因此可以聽到許多的信息,這些問題是很有價(jià)值的。對(duì)于那些典型問題,帶有普遍性的問題都必須及時(shí)解決,不能把問題的結(jié)癥遺留下來(lái),甚至沉淀下來(lái),有價(jià)值的問題要及時(shí)抓住,遺留問題要有針對(duì)性地補(bǔ),注重實(shí)效。

  三、做好作業(yè),講究規(guī)范。

  在課堂、課外練習(xí)中培養(yǎng)良好的作業(yè)習(xí)慣也很有必要。在作業(yè)中不但做得整齊、清潔,培養(yǎng)一種美感,還要有條理,這是培養(yǎng)邏輯能力的一條有效途徑,必須獨(dú)立完成。同時(shí)可以培養(yǎng)一種獨(dú)立思考和解題正確的責(zé)任感。在作業(yè)時(shí)要提倡效率,應(yīng)該十分鐘完成的作業(yè),不拖到半小時(shí)完成,疲疲憊憊的作業(yè)習(xí)慣使思維松散、精力不集中,這對(duì)培養(yǎng)數(shù)學(xué)能力是有害而無(wú)益的。抓數(shù)學(xué)學(xué)習(xí)習(xí)慣必須從高一年級(jí)主動(dòng)抓起,無(wú)論從年齡增長(zhǎng)的心理特征上講,還是從學(xué)習(xí)的不同階段的.要求上講都應(yīng)該進(jìn)行學(xué)習(xí)習(xí)慣的培養(yǎng)。

  四、寫好總結(jié),把握規(guī)律。

  一個(gè)人不斷接受新知識(shí),不斷遭遇挫折產(chǎn)生疑問,不斷地總結(jié),才有不斷地提高。"不會(huì)總結(jié)的同學(xué),他的能力就不會(huì)提高,挫折經(jīng)驗(yàn)是成功的基石。"自然界適者生存的生物進(jìn)化過程便是的例證。學(xué)習(xí)要經(jīng)?偨Y(jié)規(guī)律,目的就是為了更一步的發(fā)展。通過與老師、同學(xué)平時(shí)的接觸交流,逐步總結(jié)出一般性的學(xué)習(xí)步驟,它包括:制定計(jì)劃、課前自學(xué)、專心上課、及時(shí)復(fù)習(xí)、獨(dú)立作業(yè)、解決疑難、系統(tǒng)小結(jié)和課外學(xué)習(xí)幾個(gè)方面,簡(jiǎn)單概括為四個(gè)環(huán)節(jié)(預(yù)習(xí)、上課、整理、作業(yè))和一個(gè)步驟(復(fù)習(xí)總結(jié))。每一個(gè)環(huán)節(jié)都有較深刻的內(nèi)容,帶有較強(qiáng)的目的性、針對(duì)性,要落實(shí)到位。堅(jiān)持“兩先兩后一小結(jié)”(先預(yù)習(xí)后聽課,先復(fù)習(xí)后做作業(yè),寫好每個(gè)單元的總結(jié))的學(xué)習(xí)習(xí)慣。善于歸納總結(jié)知識(shí)間的聯(lián)系。

  學(xué)習(xí)數(shù)學(xué)并非我做題就可以取得好的成績(jī),而是要將精力花在歸納總結(jié)上。特別對(duì)課本或課堂上出現(xiàn)的例題,只要善于總結(jié),就可以了解這一小節(jié)數(shù)學(xué)內(nèi)容有哪幾種題型,每種題目的一般解法和思路是什么,從而提高運(yùn)用所學(xué)知識(shí)分析解題的能力。同時(shí),每學(xué)完一個(gè)單元,要建立本單元的知識(shí)框架,將本章的主要思路、推理方法及運(yùn)用技巧等轉(zhuǎn)變成自己的實(shí)際技能。

  五、注重反思,提升能力

  學(xué)習(xí)要注重反思,練好悟性。老師上課一般都要講清知識(shí)的來(lái)龍去脈,剖析概念的內(nèi)涵外延,分析重點(diǎn)難點(diǎn),突出思想方法,而一部分同學(xué)上課沒能專心聽課,對(duì)要點(diǎn)沒聽到或聽不全,筆記記了一大本,問題也有一大堆,課后又不能及時(shí)鞏固、總結(jié)、尋找知識(shí)間的聯(lián)系,只是忙于趕做作業(yè),亂套題型,對(duì)概念、法則、公式、定理一知半解,機(jī)械模仿,死記硬背,也有的晚上加班加點(diǎn),白天無(wú)精打采,或是上課根本不聽,自己另搞一套,結(jié)果是事倍功半,收效甚微。數(shù)學(xué)學(xué)科必須培養(yǎng)運(yùn)算能力、邏輯思維能力、空間想象力以及運(yùn)用所學(xué)知識(shí)分析問題、解決問題的重任,它的特點(diǎn)是具有高度的抽象性、邏輯性與廣泛的適用性,對(duì)能力的要求較高。數(shù)學(xué)能力只有在數(shù)學(xué)思想方法不斷地運(yùn)用反思中才能培養(yǎng)和提高。數(shù)學(xué)內(nèi)容的巨變和學(xué)習(xí)方法的落后,在學(xué)習(xí)高中數(shù)學(xué)的過程中,肯定會(huì)遇到不少困難和問題,同學(xué)們要有克服困難的勇氣和信心,勝不驕,敗不餒,千萬(wàn)不能讓問題堆積如山,形成惡性循環(huán),而是要在老師的引導(dǎo)下,尋求解決問題的辦法,培養(yǎng)分析問題,解決問題的能力,這就是的悟性。

  學(xué)會(huì)發(fā)現(xiàn)問題,并重視質(zhì)疑在學(xué)習(xí)中?吹匠煽(jī)好的同學(xué),總是有很多問題問老師。提出疑問不僅是發(fā)現(xiàn)真知的起點(diǎn),而且是發(fā)明創(chuàng)造的開端。提高學(xué)習(xí)成績(jī)的過程就是發(fā)現(xiàn),提出并解決疑問的過程。大膽向老師質(zhì)疑,不是笨的反映,而是在追求真知、積極進(jìn)取的表現(xiàn)。在聽課中,不但要“知其然”,還要“知其所以然”,這樣疑問也就在不斷產(chǎn)生,再加以分析思考使問題得以解決,學(xué)習(xí)也就得到了長(zhǎng)進(jìn)。

【高中數(shù)學(xué)的學(xué)習(xí)方法】相關(guān)文章:

高中數(shù)學(xué)的學(xué)習(xí)方法02-04

高中數(shù)學(xué)學(xué)習(xí)方法10-13

高中數(shù)學(xué)學(xué)習(xí)方法心得體會(huì)03-22

高一學(xué)習(xí)方法指導(dǎo)與學(xué)習(xí)方法12-07

英語(yǔ)學(xué)習(xí)方法06-13

學(xué)習(xí)方法與技巧06-08

數(shù)學(xué)的學(xué)習(xí)方法05-16

拼音學(xué)習(xí)方法11-15

科學(xué)的學(xué)習(xí)方法10-14