- 相關(guān)推薦
高中數(shù)學(xué)立體幾何學(xué)習(xí)的方法
立體幾何是高中數(shù)學(xué)的重點(diǎn)內(nèi)容之一,如何學(xué)好立體幾何一直是學(xué)生、家長(zhǎng)和教師比較關(guān)注的問(wèn)題,而學(xué)好立體幾何的目的之一是學(xué)會(huì)如何解決立體幾何問(wèn)題。定理的內(nèi)容都很簡(jiǎn)單,就是線與線,線與面,面與面之間的關(guān)系的闡述。
高中數(shù)學(xué)立體幾何學(xué)習(xí)方法:逐漸提高邏輯論證能力
論證時(shí),首先要保持嚴(yán)密性,對(duì)任何一個(gè)定義、定理及推論的理解要做到準(zhǔn)確無(wú)誤。
符號(hào)表示與定理完全一致,定理的所有條件都具備了,才能推出相關(guān)結(jié)論。
切忌條件不全就下結(jié)論。
其次,在論證問(wèn)題時(shí),思考應(yīng)多用分析法,即逐步地找到結(jié)論成立的充分條件,向已知靠攏,然后用綜合法(“推出法”)形式寫(xiě)出。
高中數(shù)學(xué)立體幾何學(xué)習(xí)方法:立足課本,夯實(shí)基礎(chǔ)
直線和平面這些內(nèi)容,是立體幾何的基礎(chǔ),學(xué)好這部分的一個(gè)捷徑就是認(rèn)真學(xué)習(xí)定理的證明,尤其是一些很關(guān)鍵的定理的證明。
例如:三垂線定理。
定理的內(nèi)容都很簡(jiǎn)單,就是線與線,線與面,面與面之間的關(guān)系的闡述。
但定理的證明在出學(xué)的時(shí)候一般都很復(fù)雜,甚至很抽象。
掌握好定理有以下三點(diǎn)好處:
(1)深刻掌握定理的內(nèi)容,明確定理的作用是什么,多用在那些地方,怎么用。
(2)培養(yǎng)空間想象力。
(3)得出一些解題方面的啟示。
在學(xué)習(xí)這些內(nèi)容的時(shí)候,可以用筆、直尺、書(shū)之類(lèi)的東西搭出一個(gè)圖形的框架,用以幫助提高空間想象力。
對(duì)后面的學(xué)習(xí)也打下了很好的基礎(chǔ)。
高中數(shù)學(xué)立體幾何學(xué)習(xí)方法:“轉(zhuǎn)化”思想的應(yīng)用
我個(gè)人覺(jué)得,解立體幾何的問(wèn)題,主要是充分運(yùn)用“轉(zhuǎn)化”這種數(shù)學(xué)思想,要明確在轉(zhuǎn)化過(guò)程中什么變了,什么沒(méi)變,有什么聯(lián)系,這是非常關(guān)鍵的。
例如:
(1)兩條異面直線所成的角轉(zhuǎn)化為兩條相交直線的夾角即過(guò)空間任意一點(diǎn)引兩條異面直線的平行線。
斜線與平面所成的角轉(zhuǎn)化為直線與直線所成的角即斜線與斜線在該平面內(nèi)的射影所成的角。
(2)異面直線的距離可以轉(zhuǎn)化為直線和與它平行的平面間的距離,也可以轉(zhuǎn)化為兩平行平面的距離,即異面直線的距離與線面距離、面面距離三者可以相互轉(zhuǎn)化。
而面面距離可以轉(zhuǎn)化為線面距離,再轉(zhuǎn)化為點(diǎn)面距離,點(diǎn)面距離又可轉(zhuǎn)化為點(diǎn)線距離。
(3)面和面平行可以轉(zhuǎn)化為線面平行,線面平行又可轉(zhuǎn)化為線線平行。
而線線平行又可以由線面平行或面面平行得到,它們之間可以相互轉(zhuǎn)化。
同樣面面垂直可以轉(zhuǎn)化為線面垂直,進(jìn)而轉(zhuǎn)化為線線垂直。
(4)三垂線定理可以把平面內(nèi)的兩條直線垂直轉(zhuǎn)化為空間的兩條直線垂直,而三垂線逆定理可以把空間的兩條直線垂直轉(zhuǎn)化為平面內(nèi)的兩條直線垂直。
以上這些都是數(shù)學(xué)思想中轉(zhuǎn)化思想的應(yīng)用,通過(guò)轉(zhuǎn)化可以使問(wèn)題得以大大簡(jiǎn)化。
高中數(shù)學(xué)立體幾何學(xué)習(xí)方法:總結(jié)規(guī)律,規(guī)范訓(xùn)練
立體幾何解題過(guò)程中,常有明顯的規(guī)律性。
例如:求角先定平面角、三角形去解決,正余弦定理、三角定義常用,若是余弦值為負(fù)值,異面、線面取銳角。
對(duì)距離可歸納為:距離多是垂線段,放到三角形中去計(jì)算,經(jīng)常用正余弦定理、勾股定理,若是垂線難做出,用等積等高來(lái)轉(zhuǎn)換。
不斷總結(jié),才能不斷高。
還要注重規(guī)范訓(xùn)練,高考中反映的這方面的問(wèn)題十分嚴(yán)重,不少考生對(duì)作、證、求三個(gè)環(huán)節(jié)交待不清,表達(dá)不夠規(guī)范、嚴(yán)謹(jǐn),因果關(guān)系不充分,圖形中各元素關(guān)系理解錯(cuò)誤,符號(hào)語(yǔ)言不會(huì)運(yùn)用等。
這就要求我們?cè)谄綍r(shí)養(yǎng)成良好的答題習(xí)慣,具體來(lái)講就是按課本上例題的答題格式、步驟、推理過(guò)程等一步步把題目演算出來(lái)。
答題的規(guī)范性在數(shù)學(xué)的每一部分考試中都很重要,在立體幾何中尤為重要,因?yàn)樗⒅剡壿嬐评怼?/p>
對(duì)于即將參加高考的同學(xué)來(lái)說(shuō),考試的每一分都是重要的,在“按步給分”的原則下,從平時(shí)的每一道題開(kāi)始培養(yǎng)這種規(guī)范性的好處是很明顯的,而且很多情況下,本來(lái)很難答出來(lái)的題,一步步寫(xiě)下來(lái),思維也逐漸打開(kāi)了。
【高中數(shù)學(xué)立體幾何學(xué)習(xí)的方法】相關(guān)文章:
立體幾何學(xué)習(xí)方法10-08
高中數(shù)學(xué)的學(xué)習(xí)方法02-04
學(xué)習(xí)高中數(shù)學(xué)方法10-05
高中數(shù)學(xué)學(xué)習(xí)的方法10-08
高中數(shù)學(xué)詳細(xì)學(xué)習(xí)方法10-08
高中數(shù)學(xué)有效的學(xué)習(xí)方法10-08
高中數(shù)學(xué)學(xué)習(xí)方法10-13
高中數(shù)學(xué)學(xué)習(xí)方法10-08