- 相關推薦
高考導數(shù)知識點總結
導語:導數(shù)是微積分的初步知識,是研究函數(shù),解決實際問題的有力工具。在高中階段對于導數(shù)的學習,有很多方面需要大家注意的,下面由小編為您整理出的高考導數(shù)知識點總結,一起來看看吧。
一、函數(shù)的單調性
在(a,b)內可導函數(shù)f(x),f(x)在(a,b)任意子區(qū)間內都不恒等于0.
f(x)f(x)在(a,b)上為增函數(shù).
f(x)f(x)在(a,b)上為減函數(shù).
二、函數(shù)的極值
1、函數(shù)的極小值:
函數(shù)y=f(x)在點x=a的函數(shù)值f(a)比它在點x=a附近其它點的函數(shù)值都小,f(a)=0,而且在點x=a附近的左側f(x)0,右側f(x)0,則點a叫做函數(shù)y=f(x)的極小值點,f(a)叫做函數(shù)y=f(x)的極小值.
2、函數(shù)的極大值:
函數(shù)y=f(x)在點x=b的函數(shù)值f(b)比它在點x=b附近的其他點的函數(shù)值都大,f(b)=0,而且在點x=b附近的左側f(x)0,右側f(x)0,則點b叫做函數(shù)y=f(x)的極大值點,f(b)叫做函數(shù)y=f(x)的極大值.
極小值點,極大值點統(tǒng)稱為極值點,極大值和極小值統(tǒng)稱為極值.
三、函數(shù)的最值
1、在閉區(qū)間[a,b]上連續(xù)的函數(shù)f(x)在[a,b]上必有最大值與最小值.
2、若函數(shù)f(x)在[a,b]上單調遞增,則f(a)為函數(shù)的最小值,f(b)為函數(shù)的最大值;若函數(shù)f(x)在[a,b]上單調遞減,則f(a)為函數(shù)的最大值,f(b)為函數(shù)的最小值.
四、求可導函數(shù)單調區(qū)間的一般步驟和方法
1、確定函數(shù)f(x)的定義域;
2、求f(x),令f(x)=0,求出它在定義域內的一切實數(shù)根;
3、把函數(shù)f(x)的間斷點(即f(x)的無定義點)的橫坐標和上面的各實數(shù)根按由小到大的順序排列起來,然后用這些點把函數(shù)f(x)的定義區(qū)間分成若干個小區(qū)間;
4、確定f(x)在各個開區(qū)間內的符號,根據(jù)f(x)的符號判定函數(shù)f(x)在每個相應小開區(qū)間內的增減性.
五、求函數(shù)極值的步驟
1、確定函數(shù)的定義域;
2、求方程f(x)=0的根;
3、用方程f(x)=0的根順次將函數(shù)的定義域分成若干個小開區(qū)間,并形成表格;
4、由f(x)=0根的兩側導數(shù)的符號來判斷f(x)在這個根處取極值的情況.
六、求函數(shù)f(x)在[a,b]上的最大值和最小值的步驟
1、求函數(shù)在(a,b)內的極值;
2、求函數(shù)在區(qū)間端點的函數(shù)值f(a),f(b);
3、將函數(shù)f(x)的各極值與f(a),f(b)比較,其中最大的一個為最大值,最小的一個為最小值.
特別提醒:
1、f(x)0與f(x)為增函數(shù)的關系:f(x)0能推出f(x)為增函數(shù),但反之不一定.如函數(shù)f(x)=x3在(-,+)上單調遞增,但f(x)0,所以f(x)0是f(x)為增函數(shù)的充分不必要條件.
2、可導函數(shù)的極值點必須是導數(shù)為0的點,但導數(shù)為0的點不一定是極值點,即f(x0)=0是可導函數(shù)f(x)在x=x0處取得極值的必要不充分條件.例如函數(shù)y=x3在x=0處有y|x=0=0,但x=0不是極值點.此外,函數(shù)不可導的點也可能是函數(shù)的極值點.
3、可導函數(shù)的極值表示函數(shù)在一點附近的情況,是在局部對函數(shù)值的比較;函數(shù)的最值是表示函數(shù)在一個區(qū)間上的情況,是對函數(shù)在整個區(qū)間上的函數(shù)值的比較.
【高考導數(shù)知識點總結】相關文章:
高考導數(shù)題型總結05-07
高中導數(shù)題型總結11-14
高考概率知識點05-30
《導數(shù)運算法則》教案01-09
物理知識點總結06-05
兒科知識點總結05-24
動量知識點總結05-31
英語知識點總結12-02
馬說知識點總結05-29