相似三角形的判定數(shù)學(xué)教學(xué)教案
作為一名教職工,通常需要準備好一份教案,借助教案可以恰當(dāng)?shù)剡x擇和運用教學(xué)方法,調(diào)動學(xué)生學(xué)習(xí)的積極性。怎樣寫教案才更能起到其作用呢?以下是小編為大家收集的相似三角形的判定數(shù)學(xué)教學(xué)教案,歡迎大家分享。
相似三角形的判定數(shù)學(xué)教學(xué)教案1
【教學(xué)目標(biāo)】
1、掌握相似三角形的判定定理1 。
2、會用三角形相似的判定定理1,來證明有關(guān)問題;
3、通過用三角形全等的判定方法類比得出三角形相似的判定方法,使學(xué)生進一步領(lǐng)悟類比的思想方法。
【重點和難點】
理解相似三角形的判定定理1,并能用其來解決有關(guān)問題
【教 具】
三角板、多媒體設(shè)備
【教學(xué)設(shè)計】
一、復(fù)習(xí)舊知識,運用類比的思想方法引導(dǎo)學(xué)生提出問題
1、什么叫相似三角形?怎么表示?
(在學(xué)生回答完后,教師總結(jié))對應(yīng)角相等,對應(yīng)邊成比例的`三角形,叫做相似三角形。(注意:三角形相似不一定限定在兩個三角形之間,可以是兩個以上,但不能是一個。)表示:如果?ABC與?DEF相似,則記作?ABC∽?DEF
ABACBC??用數(shù)學(xué)符號表示:∵∠A=∠D,∠B=∠E,∠C=∠F,且DEDFEF,∴?ABC∽?DEF. 注意:與三角形全等的書寫類似,表示對應(yīng)角的字母順序需要一樣
2、上節(jié)課我們還學(xué)習(xí)了一個判定兩三角形相似的定理,哪位同學(xué)能說說?
學(xué)生回答完之后投影:平行于三角形一邊的直線和其他兩邊(或兩邊的延長線)相交,所構(gòu)成的三角形與原三角形相似.
AAEDADEBCB圖(1)CD圖(2)EB圖(3)C
3、除了用定義和上面的定理來判定三角形相似外,還有什么方法可判定兩個三角形相似?我們知道判定兩個三角形全等的方法有“AAS”、“ASA”、“SAS”、“SSS”、“HL”等,那么類似地,判定兩個三角形相似還有哪些方法?今天我們開始來研究這個問題。
二、講授新課
1、觀察你和同伴的三角尺,同樣角度(30度與60度,或45度與45度)的三角尺,它們相似嗎?
2、任意畫兩個三角形,使三對角分別對應(yīng)相等,再量一量對應(yīng)邊,看看是否成比例.
3、師生共同總結(jié)
4、結(jié)論:三角形相似判定方法1:兩角分別相等的兩個三角形相似
5、已知:如圖(4)所示,在?ABC與?A'B'C'中,若∠A=∠A',∠B=∠B',試猜想:?ABC與?A'B'C'是否相似?并證明你猜的結(jié)論。
三、拓展運用
圖24.3.5
課本練習(xí)1、2
四、課堂小結(jié):
本節(jié)課你學(xué)到了什么?有什么感悟?
五、作業(yè):
P75 習(xí)題23.3 第1、5題。
相似三角形的判定數(shù)學(xué)教學(xué)教案2
教學(xué)目標(biāo)
(一)教學(xué)知識點
1.掌握相似三角形的定義、表示法,并能根據(jù)定義判斷兩個三角形是否相似.
2.能根據(jù)相似比進行計算.
(二)能力訓(xùn)練要求
1.能根據(jù)定義判斷兩個三角形是否相似,訓(xùn)練學(xué)生的判斷能力.
2.能根據(jù)相似比求長度和角度,培養(yǎng)學(xué)生的運用能力.
(三)情感與價值觀要求
通過與相似多邊形有關(guān)概念的類比,滲透類比的教學(xué)思想,并領(lǐng)會特殊與一般的關(guān)系.
教學(xué)重點
相似三角形的定義及運用.
教學(xué)難點
根據(jù)定義求線段長或角的.度數(shù).
教學(xué)方法
類比討論法
教具準備
投影片三張
第一張(記作§4.5 A)
第二張(記作§4.5 B)
第三張(記作§4.5 C)
教學(xué)過程
Ⅰ.創(chuàng)設(shè)問題情境,引入新課
[師]上節(jié)課我們學(xué)習(xí)了相似多邊形的定義及記法.現(xiàn)在請大家回憶一下.
[生]對應(yīng)角相等,對應(yīng)邊成比例的兩個多邊形叫做相似多邊形.
相似多邊形對應(yīng)邊的比叫做相似比.
[師]很好.請問相似多邊形指的是哪些多邊形呢?
[生]只要邊數(shù)相同,滿足對應(yīng)角相等、對應(yīng)邊成比例的多邊形都包括.比如相似三角形,相似五邊形等.
[師]由此看來,相似三角形是相似多邊形的一種.今天,我們就來研究相似三角形.
相似三角形的判定數(shù)學(xué)教學(xué)教案3
教學(xué)目標(biāo)
。ㄒ唬┙虒W(xué)知識點
1、掌握相似三角形的定義、表示法,并能根據(jù)定義判斷兩個三角形是否相似。
2、能根據(jù)相似比進行計算。
。ǘ┠芰τ(xùn)練要求
1、能根據(jù)定義判斷兩個三角形是否相似,訓(xùn)練學(xué)生的判斷能力。
2、能根據(jù)相似比求長度和角度,培養(yǎng)學(xué)生的運用能力。
。ㄈ┣楦信c價值觀要求
通過與相似多邊形有關(guān)概念的`類比,滲透類比的教學(xué)思想,并領(lǐng)會特殊與一般的關(guān)系。
教學(xué)重點
相似三角形的定義及運用。
教學(xué)難點
根據(jù)定義求線段長或角的度數(shù)。
教學(xué)方法
類比討論法
教具準備
投影片三張
第一張(記作§4。5 A)
第二張(記作§4。5 B)
第三張(記作§4。5 C)
教學(xué)過程
、瘛(chuàng)設(shè)問題情境,引入新課
[師]上節(jié)課我們學(xué)習(xí)了相似多邊形的定義及記法。現(xiàn)在請大家回憶一下。
[生]對應(yīng)角相等,對應(yīng)邊成比例的兩個多邊形叫做相似多邊形。
相似多邊形對應(yīng)邊的比叫做相似比。
[師]很好。請問相似多邊形指的是哪些多邊形呢?
[生]只要邊數(shù)相同,滿足對應(yīng)角相等、對應(yīng)邊成比例的多邊形都包括。比如相似三角形,相似五邊形等。
[師]由此看來,相似三角形是相似多邊形的一種。今天,我們就來研究相似三角形。
相似三角形的判定數(shù)學(xué)教學(xué)教案4
一、教學(xué)目標(biāo)
1.使學(xué)生了解判定定理2、3的證明方法并會應(yīng)用.
2.繼續(xù)滲透和培養(yǎng)學(xué)生對類比數(shù)學(xué)思想的認識和理解.
3.通過了解定理的證明方法,培養(yǎng)和提高學(xué)生利用已學(xué)知識證明新命題的能力.
4.通過學(xué)習(xí),了解由特殊到一般的唯物辯證法的觀點.
二、教學(xué)設(shè)計
類比學(xué)習(xí),探討發(fā)現(xiàn)
三、重點及難點
1.教學(xué)重點:是判定定理2、3的應(yīng)用.
2.教學(xué)難點:是了解判定定理2的證題方法與思路.
四、課時安排
1課時
五、教具學(xué)具準備
多媒體、常用畫圖工具、
六、教學(xué)步驟
[復(fù)習(xí)提問]
1.我們已經(jīng)學(xué)習(xí)了幾種判定三角形相似的方法?
2.敘述判定定理1,定理1的證題思路是什么?(①作相似,證全等,②作全等,證相似).
[講解新課]
類比三角形全等判定的“SAS”讓學(xué)生得出:
判定定理2:如果一個三角形的兩條邊和另一個三角形的兩條邊對應(yīng)成比例,并且夾角相等,那么這兩個三角形相似.
簡單說成:兩邊對應(yīng)成比例且夾角相等,兩三角形相似.
已知:如圖,在 和 中,且 .
求證: ∽
建議“已知、求證”要學(xué)生自己寫出.
另外,依照判定定理1的兩個證明思路,讓學(xué)生自己說出輔助線的作法.
下面判定定理3的引出與證明同判定定理2,這里從略.
在講解判定定理3的過程中,再一次強調(diào)使用比例證明線段相等的方法,以便使學(xué)生能夠熟練掌握它.
例3 依據(jù)下列各組條件,判定 與 是不是相似,并證明為什么:
解:讓學(xué)生試著寫出解題過程
這種類型的`題具有兩層意思:一是對正確的題目加以證明;二是對不正確的題目要說出理由或舉反例,但后者對于初二學(xué)生來說比較困難.為降低難度,這里的題目全是正確的,只要求學(xué)生能用學(xué)過的知識給出證明就可以了,不必研究如何判定兩個三角形不相似.
[小結(jié)]
1.讓學(xué)生了解判定定理2、3的證明思路與方法.
2.會利用兩個判定定理判定兩個三角形是否相似.
七、布置作業(yè)
教材P238中A組5、P241中B組1.
八、板書設(shè)計
相似三角形的判定數(shù)學(xué)教學(xué)教案5
一、教學(xué)目標(biāo)
1.使學(xué)生了解判定定理1及直角三角形相似定理的證明方法并會應(yīng)用,掌握例2的結(jié)論.
2.繼續(xù)滲透和培養(yǎng)學(xué)生對類比數(shù)學(xué)思想的認識和理解.
3.通過了解定理的證明方法,培養(yǎng)和提高學(xué)生利用已學(xué)知識證明新命題的能力.
4.通過學(xué)習(xí),了解由特殊到一般的唯物辯證法的觀點.
二、教學(xué)設(shè)計
類比學(xué)習(xí),探討發(fā)現(xiàn)
三、重點及難點
1.教學(xué)重點:是判定定理l及直角三角形相似定理的應(yīng)用,以及例2的結(jié)論.
2.教學(xué)難點:是了解判定定理1的證題方法與思路.
四、課時安排
1課時
五、教具學(xué)具準備
多媒體、常用畫圖工具
六、教學(xué)步驟
[復(fù)習(xí)提問]
1.什么叫相似三角形?什么叫相似比?
2.敘述預(yù)備定理.由預(yù)備定理的題所構(gòu)成的三角形是哪兩種情況.
[講解新課]
我們知道,用相似三角形的定義可以判定兩個三角形相似,但涉及的條件較多,需要有三對對應(yīng)角相等,三條對應(yīng)邊的比也都相等,顯然用起來很不方便.那么從本節(jié)課開始我們來研究能不能用較少的幾個條件就能判定三角形相似呢?上節(jié)課講的預(yù)備定理實際上就是一個判定三角形相似的方法,現(xiàn)在再來學(xué)習(xí)幾種三角形相似的判定方法。我們已經(jīng)知道,全等三角形是相似三角形當(dāng)相似比為1時的特殊情況,判定兩個三角形全等的三個公理和判定兩個三角形相似的三個定理之間有內(nèi)在的聯(lián)系,不同處僅在于前者是后者相似比等于1的情況,教學(xué)時可先指出全等三角形與相似三角形之間的關(guān)系,然后引導(dǎo)學(xué)生自己用類比的`方法找出新的命題,如:
問:判定兩個三角形全等的方法有哪幾種?
答:SAS、ASA(AAS)、SSS、HL.
問:全等三角形判定中的“對應(yīng)角相等”及“對應(yīng)邊相等”的語句,用到三角形相似的判定中應(yīng)如何說?
答:“對應(yīng)角相等”不變,“對應(yīng)邊相等”說成“對應(yīng)邊成比例”.
問:我們知道,一條邊是寫不出比的,那么你能否由“ASA”或“AAS”,采用類比的方法,引出一個關(guān)于三角形相似判定的新的命題呢?
答:如果一個三角形的兩個角與另一個三角形的兩個角對應(yīng)相等,那么這兩個三角形相似.
強調(diào):(1)學(xué)生在回答中,如出現(xiàn)問題,教師要予以啟發(fā)、引導(dǎo)、糾正.
(2)用類比方法找出的新命題一定要加以證明.
如圖5-53,在△ABC和△ 中, , .
問:△ABC和△ 是否相似?
分析:可采用問答式以啟發(fā)學(xué)生了解證明方法.
問:我們現(xiàn)在已經(jīng)學(xué)習(xí)了哪幾個判定三角形相似的方法?
答:①三角形的定義,②上一節(jié)學(xué)習(xí)的預(yù)備定理.
問:根據(jù)本命題條件,探討時應(yīng)采用哪種方法?為什么?
答:預(yù)備定理,因為用定義條件明顯不夠.
問:采用預(yù)備定理,必須構(gòu)造出怎樣的圖形?
答: 或 .
問:應(yīng)如何添加輔助線,才能構(gòu)造出上一問的圖形?
此問學(xué)生回答如有困難,教師可領(lǐng)學(xué)生共同探討,注意告訴學(xué)生作輔助線一定要合理.
(1)在△ABC邊AB(或延長線)上,截取 ,過D作DE∥BC交AC于E.“作相似.證全等”.
(2)在△ABC邊AB(或延長線上)上,截取 ,在邊AC(或延長線上)截取AE= ,連結(jié)DE,“作全等,證相似”.
(教師向?qū)W生解釋清楚“或延長線”的情況)
雖然定理的證明不作要求,但通過剛才的分析讓學(xué)生了解定理的證明思路與方法,這樣有利于培養(yǎng)和提高學(xué)生利用已學(xué)知識證明新命題的能力.
判定定理1:如果一個三角形的兩個角與另一個三角形的兩個角對應(yīng)相等,那么這兩個三角形相似.簡單說成:兩角對應(yīng)相等,兩三角形相似.
[小結(jié)]
1判定定理1的引出及證明思路與方法的分析,要求學(xué)生掌握兩種輔助線作法的思路.
2.判定定理1的應(yīng)用以及記住例2的結(jié)論并會應(yīng)用.
七、布置作業(yè)
教材P238中A組3、4.
【相似三角形的判定數(shù)學(xué)教學(xué)教案】相關(guān)文章:
相似三角形的判定數(shù)學(xué)教學(xué)教案5篇01-17
相似三角形的判定數(shù)學(xué)教學(xué)教案(5篇)01-17
《全等三角形的判定》教案03-18
數(shù)學(xué)三角形教學(xué)教案(通用13篇)02-27
數(shù)學(xué)認識三角形教案06-18
三角形的認識數(shù)學(xué)教案09-09