亚洲色影视在线播放_国产一区+欧美+综合_久久精品少妇视频_制服丝袜国产网站

教案

初中數(shù)學教學教案

時間:2023-02-14 11:29:35 教案 我要投稿

2023初中數(shù)學教學教案匯編15篇

  作為一位杰出的教職工,時常要開展教案準備工作,通過教案準備可以更好地根據(jù)具體情況對教學進程做適當?shù)谋匾恼{(diào)整。那么大家知道正規(guī)的教案是怎么寫的嗎?以下是小編為大家收集的2023初中數(shù)學教學教案,僅供參考,大家一起來看看吧。

2023初中數(shù)學教學教案匯編15篇

2023初中數(shù)學教學教案1

  圓柱、圓錐、圓臺和球

  總 課 題

  空間幾何體

  總課時

  第2課時

  分 課 題

  圓柱、圓錐、圓臺和球

  分課時

  第2課時

  目標

  了解圓柱、圓錐、圓臺和球的有關(guān)概念.認識圓柱、圓錐、圓臺和球及其簡單組合體的機構(gòu)特征.

  重點難點

  圓柱、圓錐、圓臺和球的概念的理解.

  1引入新課

  1.下面幾何體有什么共同特點或生成規(guī)律?

  這些幾何體都可看做是一個平面圖形繞某一直線旋轉(zhuǎn)而成的.

  2.圓柱、圓錐、圓臺和球的有關(guān)概念.

  3.圓柱、圓錐、圓臺和球的表示.

  4.旋轉(zhuǎn)體的有關(guān)概念.

  1例題剖析

  例1

  如圖,將直角梯形 繞 邊所在的直線旋轉(zhuǎn)一周,由此形成的幾何體是由哪些簡單幾何體構(gòu)成的?

  例2 指出圖 、圖 中的幾何體是由哪些簡單的幾何體構(gòu)成的.

  圖 圖

  例3

  直角三角形 中, ,將三角形 分別繞邊 , , 三邊所在直線旋轉(zhuǎn)一周,由此形成的幾何體是哪一種簡單的幾何體?或由哪幾種簡單的幾何體構(gòu)成?

  1鞏固練習

  1.指出下列幾何體分別由哪些簡單幾何體構(gòu)成.

  2.如圖,將平行四邊形 繞 邊所在的直線旋轉(zhuǎn)一周,由此形成的幾何體是由哪些簡單幾何體構(gòu)成的?

  3.充滿氣的車輪內(nèi)胎可以通過什么圖形旋轉(zhuǎn)生成?

  1課堂小結(jié)

  圓柱、圓錐、圓臺和球的有關(guān)概念及圖形特征.1課后訓練

  一 基礎(chǔ)題

  1.下列幾何體中不是旋轉(zhuǎn)體的是( )

  2.圖中的幾何體可由一平面圖形繞軸旋轉(zhuǎn) 形成,該平面圖形是( )

  ABCD

  3.用平行與圓柱底面的平面截圓柱,截面是_____________________________________.

  4._____________________可以看作圓柱的一個底面收縮為圓心時,形成的空間幾何體.

  5.用平行于圓錐底面的一平面去截此圓錐,則底面和截面間的.部分的名稱是_________.

  6.如圖是一個圓臺,請標出它的底面、軸、母線,并指出它是怎樣生成的.

  二 提高題

  7.請指出圖中的幾何體是由哪些簡單幾何體構(gòu)成的.

  三 能力題

  8.如圖,將直角梯形 繞 、 邊所在直線旋轉(zhuǎn)一周,由此形成的幾何體分別是由哪些簡單幾何體構(gòu)成的?

  ADCB圖1A圖2DBC

2023初中數(shù)學教學教案2

  教學目標

  1.會通過列方程解決“配套問題”;

  2.掌握列方程解決實際問題的一般步驟;

  3.通過列方程解決實際問題的過程,體會建模思想。

  教學重點 建立模型解決實際問題的一般方法。

  教學難點 建立模型解決實際問題的一般方法。

  學情分析

  1、 在前面已學過一元一次方程的解法,能夠簡單的運用一元一次方程解決實際問題。

  2、 培養(yǎng)學生分析、解決問題的能力及邏輯思維能力。

  學法指導 自學互幫導學法

  教 學過程

  教學內(nèi)容 教師活動 學生活動 效果預測( 可能出現(xiàn)的問題) 補救措施 修改意見

  一、復習與回顧

  問題1:之前我們通過列方程解應用問題的過程中,大致包含哪些步驟?

  1. 審:審題,分析題目中的數(shù)量關(guān)系;

  2. 設(shè):設(shè)適當?shù)奈粗獢?shù),并表示未知量;

  3. 列:根據(jù)題目中的`數(shù)量關(guān)系列方程;

  4. 解:解這個方程;

  5. 答:檢驗 并答話。

  二、應用與探究

  問題2:應用回顧的步驟解決以下問題。

  例1 某車間有22名工人,每人每天可以生產(chǎn)1 200個螺釘或2 000個螺母。 1個螺釘 需要配 2個螺母,為使每天生產(chǎn)的螺釘和螺母剛好配套,應安排生產(chǎn)螺釘和螺母的工人 各多少名?

  三、課堂練習

  1:一套儀器由一個A部件和三個B部件構(gòu)成。 用1 m3鋼材可以做40個A部件或240個B部件。 現(xiàn)要用6 m3鋼材制作這種儀器,應用多少鋼材做A部件,多少鋼材 做B部件,恰好配成這種儀器多少套?

  2:某糕點廠中秋節(jié)前要制作一批盒裝月餅,每盒中裝2塊大月餅和4塊小月餅。制作1塊大月餅要用0.05kg面粉,1塊小月餅要用0.02kg面粉。 現(xiàn)共有面粉4500kg,制作兩種月餅 應各用多少面粉,才能生產(chǎn)最多的盒裝月餅?

  四、小結(jié)與歸納

  問題4:用一元一次方程解決實際問題的基本過程有幾個步驟? 分別是什么?

  五、課后作業(yè)

  教科書第106頁習題3.4 第2、3、7題;

  1、教師利用復習提問的方式導入,幫助學生掌握列方程解應用題的步驟。

  2、教師展示例題,并 巡視學生獨立完成情況,引導學生分析問題并解決問題。

  3、教師展示練習題,引導學生分析問題并解決問題,并巡視。

  4、教師通過提問,讓學生進行歸納小結(jié)。

  1、學生回憶并獨立回答。

  2、學生先觀看課件,先獨立思考,再合作交流解決問題 。

  3、學生先觀看課件并解決問題。

  4、學生自主歸納本節(jié)課所學內(nèi)容。

  不能解決問題。

  教師展示解答過程。

2023初中數(shù)學教學教案3

  教學目標

  知識技能

  1.通過觀察實驗,使學生理解圓的對稱性.

  2.掌握垂徑定理及其推論,理解其證明,并會用它解決有關(guān)的證明與計算問題.

  過程方法1.利用操作幾何的方法,理解圓是軸對稱圖形,過圓心的直線都是它的對稱軸.

  2.經(jīng)歷探索垂徑定理及其推論的過程,進一步和理解研究幾何圖形的各種方法.

  情感態(tài)度

  激發(fā)學生觀察、探究、發(fā)現(xiàn)數(shù)學問題的興趣和欲望.

  教學重點

  垂徑定理及其運用.

  教學難點

  發(fā)現(xiàn)并證明垂徑定理

  教學過程設(shè)計

  教學程序及教學內(nèi)容師生行為設(shè)計意圖

  一、導語:直徑是圓中特殊的弦,研究直徑是研究圓的重要突破口,這節(jié)課我們就從對直徑的研究開始來研究圓的性質(zhì).

  二、探究新知

  (一)圓的對稱性

  沿著圓的任意一條直徑所在直線對折,重復做幾次,看看你能發(fā)現(xiàn)什么結(jié)論?

  得到:把圓沿著它的任意一條直徑所在直線對折,直徑兩旁的兩個半圓就會重合在一起,因此,圓是軸對稱圖形,任何一條直徑所在的直線都是圓的對稱軸.

 。ǘ⒋箯蕉ɡ

  完成課本思考

  分析:1.如何說明圖24.1-7是軸對稱圖形?

  2.你能用不同方法說明圖中的線段相等,弧相等嗎?

  ?垂徑定理:垂直于弦的直徑平分弦,并且平分弦所對的兩條弧.

  即:直徑CD垂直于弦AB則CD平分弦AB,并且平分弦AB所對的兩條。

  推理驗證:可以連結(jié)OA、OB,證其與AE、BE構(gòu)成的兩個全等三角形,進一步得到不同的等量關(guān)系.

  分析:垂徑定理是由哪幾個已知條件得到哪幾條結(jié)論?

  即一條直線若滿足過圓心、垂直于弦、則可以推出平分弦、平分弦所對的優(yōu)弧,平分弦所對的劣弧.

  ?垂徑定理推論

  平分弦(不是直徑)的直徑垂直于弦,并且平分弦所對的兩條弧.

  思考:1.這條推論是由哪幾個已知條件得到哪幾條結(jié)論?

  2.為什么要求“弦不是直徑”?否則會出現(xiàn)什么情況?

  ?垂徑定理的進一步推廣

  思考:類似推論的結(jié)論還有嗎?若有,有幾個?分別用語言敘述出來.

  歸納:只要已知一條直線滿足“垂直于弦、過圓心、平分弦、平分弦所對的優(yōu)弧,平分弦所對的劣弧.”中的兩個條件,就可以得到另外三個結(jié)論.

  (三)、垂徑定理、推論的應用

  完成課本趙州橋問題

  分析:1.根據(jù)橋的實物圖畫出的幾何圖形應是怎樣的?

  2.結(jié)合所畫圖形思考:圓的半徑r、弦心距d、弦長a,弓形高h有怎樣的數(shù)量關(guān)系?

  3.在圓中解決有關(guān)弦的問題時,常常需要作垂直于弦的直徑,作為輔助線,這樣就可以把垂徑定理和勾股定理結(jié)合起來,得到圓的'半徑r、弦心距d、弦長a的一半之間的關(guān)系式:

  三、課堂訓練

  完成課本88頁練習

  補充:

  1.如圖,一條公路的轉(zhuǎn)彎處是一段圓弧,點O是圓心,其中CD=600m,E為圓O上一點,OE⊥CD,垂足為F,EF=90m,求這段彎路的半徑.

  2.有一石拱橋的橋拱是圓弧形,如圖所示,正常水位下水面寬AB=60m,水面到拱頂距離CD=18m,當洪水泛濫時,水面寬MN=32m時是否需要采取緊急措施?請說明理由.(當水面距拱頂3米以內(nèi)時需要采取緊急措施)

  四、小結(jié)歸納

  1. 垂徑定理和推論及它們的應用

  2. 垂徑定理和勾股定理相結(jié)合,將圓的問題轉(zhuǎn)化為直角三角形問題.

  3.圓中常作輔助線:半徑、過圓心的弦的垂線段

  五、作業(yè)設(shè)計

  作業(yè):課本94頁 1,95頁 9,12

  補充:已知:在半徑為5?的⊙O中,兩條平行弦AB,CD分別長8?,6?.求兩條平行弦間的距離.教師從直徑引出課題,引起學生思考

  學生用紙剪一個圓,按教師要求操作,觀察,思考,交流,嘗試發(fā)現(xiàn)結(jié)論.

  學生觀察圖形,結(jié)合圓的對稱性和相關(guān)知識進行思考,嘗試得出垂徑定理,并從不同角度加以解釋.再進行嚴格的幾何證明.

  師生分析,進一步理解定理,析出定理的題設(shè)和結(jié)論.

  教師引導學生類比定理獨立用類似的方法進行探究,得到推論

  學生根據(jù)問題進行思考,更好的理解定理和推論,并弄明白它們的區(qū)別與聯(lián)系

  學生審題,嘗試自己畫圖,理清題中的數(shù)量關(guān)系,并思考解決方法,由本節(jié)課知識想到作輔助線辦法,

  教師組織學生進行練習,教師巡回檢查,集體交流評價,教師指導學生寫出解答過程,方法,規(guī)律.

  引導學生分析:要求當洪水到來時,水面寬MN=32m是否需要采取緊急措施,只要求出DE的長,因此只要求半徑R,然后運用幾何代數(shù)解求R.

  讓學生嘗試歸納,,發(fā)言,體會,反思,教師點評匯總

  通過學生親自動手操作發(fā)現(xiàn)圓的對稱性,為后續(xù)探究打下基礎(chǔ)

  通過該問題引起學生思考,進行探究,發(fā)現(xiàn)垂徑定理,初步感知培養(yǎng)學生的分析能力,解題能力.

  為繼續(xù)探究其推論奠定基礎(chǔ)

  培養(yǎng)學生解決問題的意識和能力

  全面的理解和掌握垂徑定理和它的推論,并進行推廣,得到其他幾個定理,完整的把握所學知識.

  體會轉(zhuǎn)化思想,化未知為已知,從而解決本題,同時把握一類題型的解題方法,作輔助線方法.

  運用所學知識進行應用,鞏固知識,形成做題技巧

  讓學生通過練習進一步理解,培養(yǎng)學生的應用意識和能力

  歸納提升,加強學習反思,幫助學生養(yǎng)成系統(tǒng)整理知識的習慣

  鞏固深化提高

  板 書 設(shè) 計

  課題

  垂徑定理垂徑定理的進一步推廣

  趙州橋問題歸納

2023初中數(shù)學教學教案4

  教學目標

  1.知識與技能

 、 相似三角形對應高的比,對應角的比,對應叫平分線的比和對應中線的比和相似比的關(guān)系。

  ② 利用相似三角形的性質(zhì)解決一些實際問題。

  2.情感與態(tài)度

 、傧嗨迫切沃袑段的比和相似比的關(guān)系,培養(yǎng)學生的探索精神和合作意識。

 、 通過運用相似三角形的性質(zhì),增強學生的應用意識

  重點與難點

  重點:相似三角形中對應線段比值的推倒,運用相似三角形的性質(zhì)解決實際問題。

  難點:相似三角形的性質(zhì)的運用。

  教學思考

  通過例題的分析講解,讓學生感受相似三角形的性質(zhì)在實際生活中的應用。

  解決問題

  在理解并掌握相似三角形對應高的比,對應角平分線的比和對應中線的比都等于相似比的過程中,培養(yǎng)學生利用相似三角形的性質(zhì)解決現(xiàn)實問題的意識和應用能力

  教學方法

  引導啟發(fā)式

  課前準備

  幻燈片

  教學設(shè)計

  教師活動 學生活動

  一、創(chuàng)設(shè)問題情境,引入新課

  帶領(lǐng)學生復習相似多邊形的性質(zhì)及相似三角形的性質(zhì),并提出疑問“在兩個相似三角形中,是否只有對應角相等,對應邊成比例這個性質(zhì)?”從而引導學生探究相似三角形的其他性質(zhì)。

  認真聽課、思考、回答老師提出的問題 。

  二、新課講解

  1、 做一做

  以實際問題做引例,初步讓學生感知相似三角形對應高的比和相似比的關(guān)系。

  鉗工小王準備按照比例尺為3∶4的`圖紙制作三角形零件,圖紙上的△ABC表示該零件的橫斷面△ABC,CD和CD分別是它們的高.

  (1) , , 各等于多少?

 。2)△ABC與△ABC相似嗎?如果相似,請說明理由,并指出它們的相似比.

  (3)請你在圖4-38中再找出一對相似三角形.

 。4) 等于多少?你是怎么做的?與同伴交流.

  閱讀課本材料,弄清題意,根據(jù)已有的經(jīng)驗積極思考,動手操作畫圖,在練習本上作答。

  依次回答課本提出的4個問題并加以思考

  2、議一議

  根據(jù)上面的引例讓學生猜測,證明相似三角形對應高的比,對應角平分線的比和對應中線的比都等于相似比。

  已知△ABC∽△ABC,△ABC與△ABC的相似比為k.

 。1)如果CD和CD是它們的對應高,那么 等于多少?

 。2)如果CD和CD是它們的對應角平分線,那么 等于多少?如果CD和CD是它們的對應中線呢?

  學生經(jīng)歷觀察,推證、討論,交流后,獨立回答。

  3、教師歸納

  總結(jié)相似三角形的性質(zhì):

  相似三角形對應高的比、對應角平分線的比和對應中線的比都等于相似比。

  學生理解、熟記。

  歸納、類比加深對相似性質(zhì)的理解

  三、課堂練習:

  例題講解,利用相似三角形的性質(zhì)解決一些問題。

  如圖所示,在等腰三角形ABC中,底邊BC=60 cm,高AD=40 cm,四邊形PQRS是正方形.

 。1) △ASR與△ABC相似嗎?為什么?

  (2) 求正方形PQRS的邊長.

  閱讀例題材料,弄懂題意,然后運用所學知識作答。寫出解題過程.

  四、探索活動:

  如圖,AD,AD分別是△ABC和△ABC的角平分線,且AB:AB=BD:BD=AD:AD,你認為△ABC∽△ABC嗎?

  針對此題,學生先獨立思考,然后展開小組討論,充分交流后作答。

  五、課時小結(jié)

  指導學生結(jié)合本節(jié)課的知識點,對學習過程進行總結(jié)。

  本節(jié)課主要根據(jù)相似三角形的性質(zhì)和判定判定推導了相似三角形的性質(zhì)、相似三角形的對應高的比、對應角平分線的比和對應中線的比都等于相似比。

  學生暢所欲言,談學習的體會,遇到的困難以及獲得的啟發(fā)。

  六、布置課后作業(yè):

  課后習題節(jié)選

  獨立完成作業(yè)。

  板書設(shè)計

  29.6相似多邊形及其性質(zhì)

  一、1.做一做

  2.議一議

  3.例題講解

  二、課堂練習

  三、課時小節(jié)

  四、課后作業(yè)

2023初中數(shù)學教學教案5

  知識技能

  會通過“移項”變形求解“ax+b=cx+d”類型的一元一次方程。

  數(shù)學思考

  1.經(jīng)歷探索具體問題中的數(shù)量關(guān)系過程,體會一元一次方程是刻畫實際問題的有效數(shù)學模型。進一步發(fā)展符號意識。

  2.通過一元一次方程的學習,體會方程模型思想和化歸思想。

  解決問題

  能在具體情境中從數(shù)學角度和方法解決問題,發(fā)展應用意識。

  經(jīng)歷從不同角度尋求分析問題和解決問題的方法的過程,體驗解決問題方法的多樣性。

  情感態(tài)度

  經(jīng)歷觀察、實驗計算、交流等活動,激發(fā)求知欲,體驗探究發(fā)現(xiàn)的快樂。

  教學重點

  建立方程解決實際問題,會通過移項解“ax+b=cx+d”類型的一元一次方程。

  教學難點

  分析實際問題中的相等關(guān)系,列出方程。

  教學過程

  活動一知識回顧

  解下列方程:

  1. 3x+1=4

  2. x-2=3

  3. 2x+0.5x=-10

  4. 3x-7x=2

  提問:解這些方程時,方程的解一般化成什么形式?這些題你采用了那些變形或運算?

  教師:前面我們學習了簡單的一元一次方程的解法,下面請大家解下列方程。

  出示問題(幻燈片)。

  學生:獨立完成,板演2、4題,板演同學講解所用到的變形或運算,共同講評。

  教師提問:(略)

  教師追問:變形的依據(jù)是什么?

  學生獨立思考、回答交流。

  本次活動中教師關(guān)注:

  (1)學生能否準確理解運用等式性質(zhì)和合并同列項求解方程。

  (2)學生對解一元一次方程的變形方向(化成x=a的形式)的理解。

  通過這個環(huán)節(jié),引導學生回顧利用等式性質(zhì)和合并同類項對方程進行變形,再現(xiàn)等式兩邊同時加上(或減去)同一個數(shù)、兩邊同時乘以(除以,不為0)同一個數(shù)、合并同類項等運算,為繼續(xù)學習做好鋪墊。

  活動二問題探究

  問題2:把一些圖書分給某班學生閱讀,如果每人分3本,則剩余20本;如果每人分4本,則還缺25本.這個班有多少學生?

  教師:出示問題(投影片)

  提問:在這個問題中,你知道了什么?根據(jù)現(xiàn)有經(jīng)驗你打算怎么做?

  (學生嘗試提問)

  學生:讀題,審題,獨立思考,討論交流。

  1.找出問題中的已知數(shù)和已知條件。(獨立回答)

  2.設(shè)未知數(shù):設(shè)這個班有x名學生。

  3.列代數(shù)式:x參與運算,探索運算關(guān)系,表示相關(guān)量。(討論、回答、交流)

  4.找相等關(guān)系:

  這批書的總數(shù)是一個定值,表示它的兩個等式相等.(學生回答,教師追問)

  總結(jié)提問:通過列方程解決實際問題分析時,要經(jīng)歷那些步驟?書寫時呢?

  教師提問1:這個方程與我們前面解過的方程有什么不同?

  學生討論后發(fā)現(xiàn):方程的`兩邊都有含x的項(3x與4x)和不含字母的常數(shù)項(20與-25).

  教師提問2:怎樣才能使它向x=a的形式轉(zhuǎn)化呢?

  學生思考、探索:為使方程的右邊沒有含x的項,等號兩邊同減去4x,為使方程的左邊沒有常數(shù)項,等號兩邊同減去20。

  教師提問3:以上變形依據(jù)是什么?

  學生回答:等式的性質(zhì)1。

  歸納:像上面那樣把等式一邊的某項變號后移到另一邊,叫做移項。

  師生共同完成解答過程。

  設(shè)問4:以上解方程中“移項”起了什么作用?

  學生討論、回答,師生共同整理:

  通過移項,含未知數(shù)的項與常數(shù)項分別位于方程左右兩邊,使方程更接近于x=a的形式。

  教師提問5:解這個方程,我們經(jīng)歷了那些步驟?列方程時找了怎樣的相等關(guān)系?

  學生思考回答。

  教師關(guān)注:

  (1)學生對列方程解決實際問題的一般步驟:設(shè)未知數(shù),列代數(shù)式,列方程,是否清楚?

  在參與觀察、比較、嘗試、交流等數(shù)學活動中,體驗探究發(fā)現(xiàn)成功的快樂。

  活動三解法運用

  例2解方程

  3x+7=32-2x

  教師:出示問題

  提問:解這個方程時,第一步我們先干什么?

  學生講解,獨立完成,板演。

  提問:“移項”是注意什么?

  學生:變號。

  教師關(guān)注:學生“移項”時是否能夠注意變號。

  通過這個例題,掌握“ax+b=cx+d”類型的一元一次方程的解法。體驗“移項”這種變形在解方程中的作用,規(guī)范解題步驟。

2023初中數(shù)學教學教案6

  一、教學目標:

  1、知道一次函數(shù)與正比例函數(shù)的定義;

  2、理解掌握一次函數(shù)的圖象的特征和相關(guān)的性質(zhì);體會數(shù)形結(jié)合思想。

  3、弄清一次函數(shù)與正比例函數(shù)的區(qū)別與聯(lián)系;

  4、 掌握直線的平移法則簡單應用 ;

  5、能應用本章的基礎(chǔ)知識熟練地解決數(shù)學問題。

  二、教學重、難點:

  重點:初步構(gòu)建比較系統(tǒng)的函數(shù)知識體系, 能應用本章的基礎(chǔ)知識熟練地解決數(shù)學問題。

  難點:對 直線的平移法則的理解,體會數(shù)形結(jié)合思想。

  三、教學媒體:大屏幕。

  四、教學設(shè)計簡介:

  因為這是初三總復習節(jié)段的復習課,在這之前已經(jīng)復習了變量、函數(shù)的定義、表示法及圖象,而本節(jié)的教學任務是一次函數(shù)的基礎(chǔ)知識及其簡單的應用,沒有涉及實際應用。為了節(jié)約學生的時間,打造高效課堂,我開門見山,直接向?qū)W生展示 教學目標,然后讓學生根據(jù)本節(jié)課的復習目標進行 聯(lián)想回顧,變被動學習為主動學習。例如,在“圖象及其性質(zhì)”環(huán)節(jié)中,老師讓學生自己說出一次函數(shù)圖象的形狀、位置及增減性,不完整的可讓其他學生補充 糾正 。這樣,使無味的復習課變得活躍一些,增強學習氣氛。 隨后教師就用大屏幕展示出標準答案,然后教師組織學生以比賽的形式做一些針對性的練習。為了鞏固知識點,學生解決每一個問題時都要求其說出所運用的知識點。

  五、教學過程:

  1、一次函數(shù)與正比例函數(shù)的定義 :

  一次函數(shù):一般地,若y=kx+b (其中k,b 為常數(shù)且k ≠0 ),那么y 是x 的一次函數(shù)正比例函數(shù):對于 y=kx+b ,當b=0, k ≠0 時,有y=kx, 此時稱y 是x 的正比例函數(shù),k 為正比例系數(shù)。

  2、一次函數(shù)與正比例函數(shù)的區(qū)別與聯(lián)系:

  (1 )從解析式看:y=kx+b(k ≠0 ,b 是常數(shù)) 是一次函數(shù);而y=kx(k ≠0 , b=0) 是正比例函數(shù),顯然正比例函數(shù)是一次函數(shù)的特例,一次函數(shù)是正比例函數(shù)的推廣。

 。2 )從圖象看:正比例函數(shù)y=kx(k ≠0) 的圖象是過原點(0 ,0 )的一條直線;而一次函數(shù)y=kx+b(k ≠0) 的`圖象是過點(0 ,b )且與y=kx 平行的一條直線。

  基礎(chǔ)訓練一:

  1、指出下列函數(shù)中的正比例函數(shù)和一次函數(shù):①y = x +1 ;②y = - x/5 ;

 、踶 = 3/x ;④y = 4x ;⑤y =x (3x+1 )-3x ;⑥y=3 (x-2 );⑦y=x/5-1/2 。

  2、下列給出的兩個變量中,成正比例函數(shù)關(guān)系的是:A、少年兒童的身高和年齡;B、長方形的面積一定,它的長與寬;C、圓的面積和它的半徑;D、勻速運動中速度固定時,路程與時間的關(guān)系。

  3、對于函數(shù) y = (m+1 )x + 2- n ,當 m、n 滿足什么條件時為正比例函數(shù)?當m、n 滿足什么條件時為一次函數(shù)?

  3、正比例函數(shù)、一次函數(shù)的圖象和性質(zhì):

  7、k,b 的符號與直線y=kx+b(k ≠0) 的位置關(guān)系:

  k 的符號決定了直線y=kx+b(k ≠0 );b 的符號決定了直線y=kx+b 與y 軸的交點。當k>0 時,直線; 當k<0 時,直線。

  當b >0 時,直線交于y軸的;當b <0 時,直線交于y軸的。

  為此直線y=kx+b(k ≠0) 的位置有4 種情況,分別是:

  當k>0 , b >0 時,直線經(jīng)過 ;當k>0 , b <0 時,直線經(jīng)過 ;

  當k<0 ,b >0 時,直線經(jīng)過 ;當k<0 ,b <0 時,直線經(jīng)過 。

  基礎(chǔ)訓練二:

  1、寫出一個圖象經(jīng)過點(1 ,- 3 )的函數(shù)解析式為 。

  2、直線y =- 2X - 2 不經(jīng)過第 象限,y 隨x 的增大而 。

  3、如果P (2 ,k )在直線y=2x+2 上,那么點P 到x 軸的距離是。

  4、已知正比例函數(shù) y =(3k-1)x,, 若y 隨x 的增大而增大,則k 的取值范圍是。

  5、過點(0 ,2 )且與直線y=3x 平行的直線是 。

  6、若正比例函數(shù)y = (1-2m )x 的圖像過點A (x1 ,y1 )和點B (x2 ,y2 )當x1 <x2 時,y1 >y2, 則m 的取值范圍是。

  7、若函數(shù)y = ax+b 的圖像過一、二、三象限,則ab 0 。

  8、若y-2 與x-2 成正比例,當x=-2 時,y=4, 則x= 時,y = -4 。

  9、直線y=- 5x+b 與直線y=x-3 都交y 軸上同一點,則b 的值為 。

  10、將直線y = -2x-2 向上平移2 個單位得到直線 ;

  將它向左平移2 個單位得到直線 。

  六、教學反思:

  本節(jié)課是我這學期做的一節(jié)匯報課。教學任務基本完成,最后剩下一道綜合訓練題沒來得及探討,留作了課后作業(yè)。從本節(jié)課的設(shè)計上看,我自認為知識全面,講解透徹,條理清晰,系統(tǒng)性強,講練結(jié)合,訓練到位,一節(jié)課下來后學生在基礎(chǔ)知識方面不會有什么漏洞。因為復習課的課堂容量比較大,需要展示給學生的知識點比較多,訓練題也比較多,所以我選擇在多媒體上課。應該說在設(shè)計之初,我是在兩種方案中選出的一種為學生節(jié)省時間的復習方法,課前的工作全由教師完成,教師認真?zhèn)湔n,查閱資料,搜集有針對性的訓練題,學生只要課堂上能按照教師的思路去做就很高效了?蓻]想到,在課的進行中,我就聽到有的教師在切切私語,都是初三學生了,怎么好象沒有幾個學習的。我也感覺到這節(jié)課確實有一大部分學生注意力渙散,沒有全身心地投入到學習中去。以致于面對簡單的問題都卡,思維不連續(xù)。糾其原因,是我沒有把學生學習的積極性充分調(diào)動起來,學生沒有發(fā)揮出學習的主動性。課堂訓練以競賽的形式進行,似乎有一定的刺激性,但缺少后續(xù)的刺激活動,學生沒有保持住持久的緊張狀態(tài)。

  課后我找到了學委和科代表,請他們協(xié)助我一同反思本節(jié)課的優(yōu)缺點,并把在以往的章末復習時曾采取過的另一種復習方案闡述給他們聽,就是課前先把所有的復習任務都交給學生完成,教師指導學生瀏覽教材、查閱資料歸納本章的基本概念、基本性質(zhì)、基本方法,并收集與每個知識點相關(guān)的有針對性的問題,也可以自己編題,同時要把每一個問題的答案做出來,盡量要一題多解。再由小組長組織小組成員匯編,在匯編過程中要去粗取精。課堂就是以小組為單位學生展示自己的舞臺,在這個舞臺上學生是主角,在這個舞臺上學生可以成果共享,在這個舞臺上學生收獲著自己的收獲。臺上他們是主角,臺下他們也是主角。

  但是在初三總復習時,我理解學生的忙,所以能包辦的我就一律代做,以為這就是幫學生減輕負擔,學生自己去做的事是少了,可是需要學生被動記憶的知識多;教師把一節(jié)設(shè)計的井井有條,想要學生在這一節(jié)課里收獲更多,但被動的學生并沒有全身心的投入到學生中去,降低了課堂效率,又把好多任務壓到課下,最后教師減輕學生的課后負擔的想法還是落空了。

2023初中數(shù)學教學教案7

  一、教材分析

  本節(jié)內(nèi)容是人民教育出版社出版《義務教育課程實驗教科書(五四學制)數(shù)學》(供天津用)八年級下冊第十章整式第一節(jié)整式加減第2小節(jié)整式的加減。

  二、設(shè)計思想

  本節(jié)內(nèi)容是學生掌握了“整式”有關(guān)概念的延展學習,為后繼學習整式運算、因式分解、一元二次方程及函數(shù)知識奠定基礎(chǔ),是“數(shù)”向“式”的正式過度,具有十分重要地位。

  八年級學生已具有了較強的數(shù)的運算技能和“合并”的意識(解一元一次方程中用)同時也具有初步的觀察、歸納、探索的技能。因此,我結(jié)合教材,立足讓每個學生都有發(fā)展的宗旨,我采用合作探究的學習方式開展教學活動,通過設(shè)計有針對性、多樣式的問題引導學生,給學生提供充足的、和諧的探索空間讓學生學習。通過學習活動不但培養(yǎng)學生化簡意識,提升數(shù)學運算技能而且讓學生深刻體會到數(shù)學是解決實際問題的重要工具,增強應用數(shù)學的意識。

  三、教學目標:

  (一)知識技能目標:

  1、理解同類項的含義,并能辨別同類項。

  2、掌握合并同類項的方法,熟練的合并同類項。

  3、掌握整式加減運算的方法,熟練進行運算。

  (二)過程方法目標:

  1、通過探究同類項定義、合并同類項的方法的活動,培養(yǎng)學生觀察、歸納、探究的能力。

  2、通過合并同類項、整式加減運算的練習活動,提高學生運算技能,提升運算的準確率培養(yǎng)學生化簡意識,發(fā)展學生的抽象概括能力。

  3、通過研究引例、探究例1的活動,發(fā)展學生的形象思維,初步培養(yǎng)學生的符號感。

  (三)情感價值目標:

  1、通過交流協(xié)商、分組探究,培養(yǎng)學生合作交流的意識和敢于探索未知問題的.精神。

  2、通過學習活動培養(yǎng)學生科學、嚴謹?shù)膶W習態(tài)度。

  四、教學重、難點:

  合并同類項

  五、教學關(guān)鍵:

  同類項的概念

  六、教學準備:

  教師:

  1、篩選數(shù)學題目,精心設(shè)置問題情境。

  2、制作大小不等的兩個長方體紙盒實物模型,并能展開。

  3、設(shè)計多媒體教學課件。(要凸顯①單項式中系數(shù)、字母、指數(shù)的特征②長方體紙盒立體圖、展開圖。)

  學生:

  1、復習有關(guān)單項式的概念、有理數(shù)四則運算及去括號的法則)

  2、每小組制作大小不等的兩個長方體紙盒模型。

2023初中數(shù)學教學教案8

  教學目標:

  1、 使學生會列一元一次方程解有關(guān)應用題。

  2、 培養(yǎng)學生分析解決實際問題的能力。

  復習引入:

  1、在小學里我們學過有關(guān)工程問題的應用題,這類應用題中一般有工作總量、工作時間、工作效率這三個量。這三個量的關(guān)系是:

 。1)__________ (2)_________ (3)_________

  人們常規(guī)定工程問題中的'工作總量為______。

  2、由以上公式可知:一件工作,甲用a小時完成,則甲的工作量可看成________,工作時間是________,工作效率是_______。若這件工作甲用6小時完成,則甲的工作效率是_______。

  講授新課:

  1、例題講解:

  一件工作,甲單獨做20小時完成,乙單獨做12小時完成。

  問:甲乙合做,需幾小時完成這件工作?

  (1)首先由一名至兩名學生閱讀題目。

 。2)引導

 、:這道題目的已知條件是什么?

 、颍哼@道題目要求什么問題?

 、螅哼@道題目的相等關(guān)系是什么?

 。3)由一學生口頭設(shè)出求知數(shù),并列出方程,師生共同解答;同時教師在黑板上寫出解題過程,形成板書。

  2、練習:

  有一個蓄水池,裝有甲、乙、丙三個進水管,單獨開甲管,6分鐘可注滿空水池;單獨開乙管,12分鐘可注滿空水池;單獨開丙管,18分鐘可注滿空水池,如果甲、乙、丙三管齊開,需幾分鐘可注滿空水池?

  此題的處理方法:

 、瘢合扔梢幻麑W生閱讀題目;

  Ⅱ:然后由兩名學生板演;

2023初中數(shù)學教學教案9

  學習目標:

  【知識與技能】

  1、通過具體實例認識兩個圖形關(guān)于某一點或中心對稱的本質(zhì):就是一個圖形繞一點旋轉(zhuǎn)180°而成.

  2、掌握成中心對稱的兩個圖形的性質(zhì),以及利用兩種不同方式作出中心對稱的圖形.

  【過程與方法】

  利用中心對稱的特征作出某一圖形成中心對稱的圖形,確定對稱中心的位置.

  【情感、態(tài)度與價值觀】

  經(jīng)歷對日常生活與中心對稱有關(guān)的圖形進行觀察、分析、欣賞、動手操作、畫圖等過程,發(fā)展審美能力,增強對圖形的欣賞意識.

  【重點】

  中心對稱的`性質(zhì)及初步應用.

  【難點】

  中心對稱與旋轉(zhuǎn)之間的關(guān)系.

  學習過程:

  一、自主學習

  (一)復習鞏固

  如圖,△ABC繞點O旋轉(zhuǎn),使點A旋轉(zhuǎn)到點D處,畫出旋 轉(zhuǎn)后的三角形,并寫出簡要作法.

  作法:(1)

 。2)

  (3)

 。4)

  即:△DEF就是所求作的三角形,如圖所示.

 。ǘ┳灾魈骄

  1、觀察、實驗:選擇你最喜歡的一幅圖,用透明紙覆蓋在圖上,描出其中的一部分,用大頭針固定在O處。旋轉(zhuǎn)180°后,你有什么發(fā)現(xiàn)?

 。1) (2) (3)

  發(fā)現(xiàn):把一個圖形繞著某一個 旋轉(zhuǎn) ,如果他們能夠與另一個圖形 ,那么就說這 個圖形 或 ,這個點叫做 ,這兩個圖形中的 叫做關(guān)于中心的 .

  2、組內(nèi)交流

  在圖5中,我們通過實驗知四邊形A B C D和四邊形A'B'C'D'關(guān)于點O對稱。

 。1)你知道它的對稱中心、對稱點嗎?

 。2)連接A A'、 B B' 、C C' 、D D'你有什么發(fā)現(xiàn)?

 。3)線段AB、BC、CD、DA的對應線段是什么?AB與A'B'的關(guān)系是怎樣的?四邊形ABCD和四邊形A'B'C'D'有什么關(guān)系?為什么?

 。ㄈ、歸納總結(jié):

  1、默寫中心對稱的概念:

  2、中心對稱的性質(zhì):

  1)

  2)

  (四)自我嘗試:

 。1)、已知點A和點O,畫出點A關(guān)于點O的對稱點A'。

  (2)、已知如圖△ABC和點O,畫出與△ABC關(guān)于點O的對稱圖形A'B'C'。

  二、教師點拔

  1、 中心對稱與圖形旋轉(zhuǎn)的關(guān)系?

  2、中心對稱與軸對稱的區(qū)別:

  軸對稱中心對稱

  有一條對稱軸---( )有一個對稱中心---( )

  圖形沿對稱軸 (翻折180°)后重合圖形繞對稱中心 后重合

  對稱點的連線被對稱軸 對稱點連線經(jīng)過 ,且被對稱

  中心

  三、堂檢測

  1、已知下列命題:① 關(guān)于中心對稱的兩個圖形一定不全等; ②關(guān)于中心對稱的兩個圖形一定全等; ③兩個全等的圖形一定成中心對稱,其中真命題的個數(shù)是( )

  A、0 B、1 C、2 D、3

  2、下列圖形即是軸對稱又是中心對稱的是( )

  A B C C

  3、已知,△ABC與△DEF成中心對稱,請找出它們的對稱中心。

  4、如圖,若四邊形ABCD與四邊形CEFG成中心對稱,則它們的對稱中心是______,點A的對稱點是______,E的對稱點是______.BD∥______且BD=______.連結(jié)A,F(xiàn)的線段經(jīng)過______,且被C點______,△ABD≌______.

  4題圖

  5、如圖,點A'是A關(guān)于點O的對稱點,請作出線段AB關(guān)于點O對稱的線段A'B'

  四、外拓展

  1、如圖,在△ABC中,B=90°,C=30°,AB=1 ,將△ABC繞定點A旋轉(zhuǎn)180°,點C落在C'處,求CC'的長為多少?

  2、如圖,已知AD是△ABC的中線:

  1)畫出與△ACD關(guān)于D點成中心對稱的三角形;

  2)找出與AC相等的線段;

  3)探索:三角形中AB與AC的和與中線AD之間的關(guān)系,并說明理由;

  4)若AB=5、AC=3,則線段AD的取值范圍為多少?

2023初中數(shù)學教學教案10

  設(shè)計思想:

  這堂課為章節(jié)復習課,教師可以先從總體知識結(jié)構(gòu)入手,引導學生逐步回顧所學的知識,要知道本章主要需要掌握的是如何利用二次函數(shù)及其表示方法、二次函數(shù)的圖像及性質(zhì)解決實際問題,即二次函數(shù)的應用。

  目標:

  1.知識與技能

  初步認識二次函數(shù);

  掌握二次函數(shù)的表達式,體會二次函數(shù)的意義;

  會用數(shù)表、圖像和表達式三種表示方法來表示二次函數(shù),并會相互轉(zhuǎn)化;

  會畫二次函數(shù),能利用二次函數(shù)求一元二次方程的近似解;

  利用二次函數(shù)的圖像和性質(zhì)解決相關(guān)實際問題,靈活應用二次函數(shù)。

  2.過程與方法

  通過利用二次函數(shù)的圖像解決問題,體會數(shù)形結(jié)合的數(shù)學方法;

  在學習探索的過程中逐步體會和認識二次函數(shù)。

  3.情感、態(tài)度與價值觀

  體會從特殊函數(shù)到一般函數(shù)的過渡,注意找函數(shù)之間的聯(lián)系和區(qū)別;

  樹立主動參與積極探索嘗試、猜想和發(fā)現(xiàn)的精神;

  注意運用數(shù)形結(jié)合的思想,改變過去只利用數(shù)式,而忽略圖形的思想。

  教學重點:二次函數(shù)的圖像和性質(zhì)。

  教學難點:二次函數(shù)y= 的圖像及性質(zhì);二次函數(shù)的應用。

  教學方法:討論法、引導式。

  教學安排:1課時。

  教學媒體:幻燈片。

  教學過程:

 、.知識復習

  師:這堂課是這章的總結(jié)課,下面我們來看這章整體知識框架圖:(幻燈片)

  觀看這章的知識整體框架,思考下面的問題:

  1.你能用二次函數(shù)的知識解決哪些問題?

  2.日常生活中,你在什么地方見到過二次函數(shù)的圖像拋物線的樣子?

  3.你知道二次函數(shù)與一元二次方程的關(guān)系嗎?你能解決什么問題?

  同學們,想想你們學習本章的收獲是__________。

  同學們相互討論,然后師生互動共同探討上面的問題。

 、.典型例題

  例1:某農(nóng)場種植一種蔬菜,銷售員張平根據(jù)往年的銷售情況,對今年這種蔬菜的銷售價格進行了預測,預測情況如圖2-1,圖中的拋物線(部分)表示這種蔬菜銷售價與月份之間的關(guān)系,觀察圖象,你能得到關(guān)于這種蔬菜銷售情況的哪些信息?

  要求:(1)請?zhí)峁┧臈l信息;(2)不必求函數(shù)的解析式。

  解:(1)2月份每千克銷售價是3.5元;(2)2月份每千克銷售價是0.5元;(3)1月到7月的銷售價逐月下降;(4)7月到12月的銷售價逐月上升;(5)2月與7月的銷售差價是每千克3元;(6)7月份銷售價最低,1月份銷售價最高;(7)6月與8月、5月與9與、4月與10月、3月與11月,2月與12月的銷售價相同。

 。ㄗⅲ捍祟}答案不唯一,以上答案僅供參考,若有其他答案,只要是根據(jù)圖象得出的信息,并且敘述正確即可)

  討論:

  生:對于這類問題,我常感到無從下手。

  師:要重點看一下橫軸與縱軸分別是哪一個變量,然后再看一下它的數(shù)據(jù)分別是多少。

  例2:(北京石景山)已知:等邊 中, 是關(guān)于 的方程 的兩個實數(shù)根,若 分別是 上的點,且 ,設(shè) 求 關(guān)于 的函數(shù)關(guān)系式,并求出 的最小值。

  解: 是等邊三角形, 。

  不合題意,舍去, 即

  又 ,

  又 ∽

  設(shè) 則

  當 ,即 為 的重點時, 有最小值6。

  討論:

  生:這個題目包含的內(nèi)容較多,我感到難度很大。

  師:本題涉及到等邊三角形的性質(zhì),解直角三角形。二次函數(shù)的有關(guān)內(nèi)容,是一道綜合性題目。

  生:對于這樣的題目如何入手呢?

  師:要認真分析題目,明確每一條件的用處。

  例3:某校初三年級的一場籃球比賽中,如圖2-2,隊員甲正在投籃,已知球出手時離地面高 ,與籃球中心的水平距離為7m,當球出手后水平距離為4m時到達最大高度4m,設(shè)籃球運行的軌跡為拋物線,籃圈距地面3m。

 。1)建立如圖2-3的平面直角坐標系,問此球能否準確投中?

 。2)此時,若對方隊員乙在甲前面1m處跳起蓋帽攔截,已知乙的最大摸高為3.1m,那么他能否獲得成功?

  解:(1)

  根據(jù)題意:球出手點、最高點和藍圈的坐標分別為 。

  設(shè)二次函數(shù)的解析式

  代入 兩點坐標為

  將 點坐標代入解析式;左=右;所以一定能投中。

  (2)將 代入解析式: 蓋帽能獲得成功。

  討論:

  生:此球能否準確投中,與二次函數(shù)的知識有何聯(lián)系,我不大清楚。

  師:籃球運行的.軌跡為拋物線,藍圈可以看成一個點,所以此球能否準確投中的問題,實際上就是看一下該點在不在拋物線上即可。

  例4:如圖2-4,一位籃球運動員跳起投籃,球沿拋物線 運行,然后準確落入籃框內(nèi),已知籃框的中心離地面的距離為3.05米。

 。1)球在空中運行的最大高度為多少米?

 。2)如果該運動員跳投時,球出手離地面的高度為2.25米,請問他距離籃框中心的水平距離是多少?

  解:(1) 拋物線 的頂點坐標為(0,3.5)。

  ∴球在空中運行的最大高度為3.5米。

 。2)在 中,當 時,

  又 。

  當 時, 又

  故運動員距離籃框中心水平距離為 米。

  討論:

  生:我對運動員距離籃框中心水平距離有點迷惑。

  師:運動員距離籃框中心水平距離,就是過藍框向地面做垂線,垂足與人的站立點的距離。

  例5:已知拋物線 。

 。1)證明拋物線頂點一定在直線 上。

 。2)若拋物線與 軸交于 兩點,當 ,且 時,求拋物線的解析式。

 。3)若(2)中所求拋物線頂點為 ,與 軸交點在原點上方,拋物線的對稱軸與 軸腳于點 ,直線 與 軸交于點 ,點 為拋物線對稱軸上一動點,過點 作 ⊥ ,垂足 在線段 上,試問:是否存在點 ,使 若存在,求出點 的坐標;若不存在,請說明理由。

  解:(1) ,

  ∴頂點坐標為( )∴頂點在直線 上

 。2)∵拋物線與 軸交于 兩點,∴ 。

  即 ,解得 。

  ∵ 或 當 時, (與 矛盾,舍去), 。

  當 時, 或 。

 。3)∵拋物線與 軸交點在原點的上方,∴

  ∵直線 與 軸交于點 ∴設(shè) ,則

  解得 。

  當 時,

  當 時,

  ∴ 或

  討論:

  生:拋物線頂點在直線 上如何證明?

  師:拋物線的頂點坐標可以求出吧?

  生:只要用公式即可。

  師:將拋物線的頂點坐標代入直線的解析式,如果適合直線的解析式,則點在直線 上;否則,點不在直線 上。

 、.課堂小結(jié)

  我們這堂課主要需要掌握的是如何利用二次函數(shù)及其表示方法、二次函數(shù)的圖像及性質(zhì)解決實際問題,即二次函數(shù)的應用。

  板書設(shè)計:

  小結(jié)與復習

  一、知識回顧 例2 例3

  二、典型例題 例4 例5

2023初中數(shù)學教學教案11

  一、 教學目標

  1、 知識與技能目標

  掌握有理數(shù)乘法法則,能利用乘法法則正確進行有理數(shù)乘法運算。

  2、 能力與過程目標

  經(jīng)歷探索、歸納有理數(shù)乘法法則的過程,發(fā)展學生觀察、歸納、猜測、驗證等能力。

  3、 情感與態(tài)度目標

  通過學生自己探索出法則,讓學生獲得成功的喜悅。

  二、 教學重點、難點

  重點:運用有理數(shù)乘法法則正確進行計算。

  難點:有理數(shù)乘法法則的探索過程,符號法則及對法則的理解。

  三、 教學過程

  1、 創(chuàng)設(shè)問題情景,激發(fā)學生的求知欲望,導入新課。

  教師:由于長期干旱,水庫放水抗旱。每天放水2米,已經(jīng)放了3天,現(xiàn)在水深20米,問放水抗旱前水庫水深多少米?

  學生:26米。

  教師:能寫出算式嗎?學生:……

  教師:這涉及有理數(shù)乘法運算法則,正是我們今天需要討論的問題

  2、 小組探索、歸納法則

  (1)教師出示以下問題,學生以組為單位探索。

  以原點為起點,規(guī)定向東的'方向為正方向,向西的方向為負方向。

 、 2 ×3

  2看作向東運動2米,×3看作向原方向運動3次。

  結(jié)果:向 運動 米

  2 ×3=

 、 -2 ×3

  -2看作向西運動2米,×3看作向原方向運動3次。

  結(jié)果:向 運動 米

  -2 ×3=

 、 2 ×(-3)

  2看作向東運動2米,×(-3)看作向反方向運動3次。

  結(jié)果:向 運動 米

  2 ×(-3)=

 、 (-2) ×(-3)

  -2看作向西運動2米,×(-3)看作向反方向運動3次。

  結(jié)果:向 運動 米

  (-2) ×(-3)=

 。2)學生歸納法則

 、俜枺涸谏鲜4個式子中,我們只看符號,有什么規(guī)律?

 。+)×(+)=( ) 同號得

 。-)×(+)=( ) 異號得

 。+)×(-)=( ) 異號得

 。-)×(-)=( ) 同號得

 、诜e的絕對值等于 。

 、廴魏螖(shù)與零相乘,積仍為 。

  (3)師生共同用文字敘述有理數(shù)乘法法則。

  3、 運用法則計算,鞏固法則。

 。1)教師按課本P75 例1板書,要求學生述說每一步理由。

 。2)引導學生觀察、分析例子中兩因數(shù)的關(guān)系,得出兩個有理數(shù)互為倒數(shù),它們的積為 。

 。3)學生做練習,教師評析。

  (4)教師引導學生做例題,讓學生說出每步法則,使之進一步熟悉法則,同時讓學生總結(jié)出多因數(shù)相乘的符號法則。

2023初中數(shù)學教學教案12

  課題:12.3等腰三角形(第一課時)

  教學內(nèi)容:新人教版八年級上冊十二章第三節(jié)等腰三角形的第一課時

  任課教師:東灣中學李曉偉

  設(shè)計理念:

  教學的實質(zhì)是以教材中提供的素材或?qū)嶋H生活中的一些問題為載體,通過一系列探究互動過程,滲透分類討論、數(shù)形結(jié)合和方程的思想方法,達到學生知識的構(gòu)建、能力的培養(yǎng)、情感的陶冶、意識的創(chuàng)新。

  ㈠教材的地位和作用分析

  等腰三角形是新人教版八年級上冊十二章第三節(jié)等腰三角形的第一課時的內(nèi)容。本節(jié)課是在前面學習了三角形的有關(guān)概念及性質(zhì)、軸對稱變換、全等三角形、垂直平分線和尺規(guī)作圖的基礎(chǔ)上,研究等腰三角形的定義及其重要性質(zhì),它既是前面所學知識的延伸,也是后面直角三角形、等邊三角形的知識的重要儲備,我們常常利用它證明角相等、線段相等、兩直線垂直,因此本節(jié)課具有承上啟下的重要作用。

  另外,本堂課通過“活動探究”、“觀察—猜想—證明”等途徑,進一步培養(yǎng)學生的動手能力、觀察能力、分析能力和邏輯推理能力,因此,本堂課無論在知識上,還是在對學生能力的培養(yǎng)及情感教育等方面都有著十分重要的作用。

  ㈡教學內(nèi)容的分析

  本堂課是等腰三角形的第一堂課,在認識等腰三角形的基礎(chǔ)上著重介紹“等腰三角形的性質(zhì)”。在教學設(shè)計的過程中,通過展示我國今年舉辦的精彩絕倫的盛會—上海世博會圖片中的等腰三角形,結(jié)合云南豐富的文化資源,讓學生感知生活中處處有數(shù)學,感受圖形的和諧美、對稱美;通過學生感興趣的數(shù)學情景引入等腰三角形定義,提高學生的學習樂趣;讓學生通過動手剪等腰三角形、對折等腰三角形等活動,探究發(fā)現(xiàn)等腰三角形的性質(zhì),經(jīng)歷知識的“再發(fā)現(xiàn)”過程。在探究活動的過程中發(fā)展創(chuàng)新思維能力,改變學生的學習方式。在發(fā)現(xiàn)等腰三角形的性質(zhì)的基礎(chǔ)上,再經(jīng)過推理證明等腰三角形的性質(zhì),使得推理證明成為學生觀察、實驗、探究得出結(jié)論的自然延伸,有機地將等腰三角形的認識與等腰三角形的性質(zhì)的證明結(jié)合起來,從中發(fā)展學生推理能力。

  在例題的選取上,注重聯(lián)系實際,激發(fā)學生學習興趣,讓學生主動用數(shù)學知識解決實際問題,同時滲透分類討論、數(shù)形結(jié)合和方程的數(shù)學思想方法,讓學生形成自我的數(shù)學思維和能力,發(fā)展學生應用數(shù)學的意識。

  二、目標及其解析

  ㈠教學目標:

  知識技能:

  1.了解等腰三角形的概念,認識等腰三角形是軸對稱圖形;2.經(jīng)歷探究等腰三角形性質(zhì)的過程,理解等腰三角形的性質(zhì)的證明;

  3.掌握等腰三角形的性質(zhì),能運用等腰三角形的性質(zhì)解決生活中簡單的實際問題。

  數(shù)學思考:

  1.經(jīng)歷“觀察?實驗?猜想?論證”的過程,發(fā)展學生幾何直觀;

  2.經(jīng)歷證明等腰三角形的性質(zhì)的過程,體會證明的必要性,發(fā)展合情推理能力和初步的演繹推理能力.

  解決問題:

  1.能運用等腰三角形的性質(zhì)解決生活中的實際問題,發(fā)展數(shù)學的應用能力,獲得解決問題的經(jīng)驗;

  2.在小組活動和探究過程中,學會與人合作,體會與他人合作的重要性.

  情感態(tài)度:

  1.經(jīng)歷“觀察?實驗?猜想?論證”的過程,體驗數(shù)學活動充滿著探究性和創(chuàng)造性,感受證明的必要性、證明過程的嚴謹性以及結(jié)論的確定性,并有克服困難和運用知識解決問題的成功體驗,建立學好數(shù)學的自信心;

  2.經(jīng)歷運用等腰三角形解決實際問題的過程,認識數(shù)學是解決實際問題和進行交流的重要工具,了解數(shù)學對促進社會進步和發(fā)展人類理性精神的作用;

  3.在獨立思考的基礎(chǔ)上,通過小組合作,積極參與對數(shù)學問題的討論,敢于發(fā)表自己的觀點,并尊重與理解他人的見解,在交流中獲益.

  ㈡教學重點:

  等腰三角形的性質(zhì)及應用。

  ㈢教學難點:

  等腰三角形性質(zhì)的證明。

  ㈣解析

  本堂課是等腰三角形的第一堂課,所以對于本堂課的知識目標的定位,主要考慮如下:1.了解等腰三角形的概念,認識等腰三角形是軸對稱圖形,在本堂課中要達到如下要求:⑴理解等腰三角形的定義,知道等腰三角形的頂角、底角、腰和底邊;⑵知道等腰三角形是軸對稱圖形,它有一條對稱軸,即:頂角角平分線(底邊上的高或底邊上的中線)所在直線;

  2.經(jīng)歷探究等腰三角形性質(zhì)的過程,掌握等腰三角形的性質(zhì)的證明,在課堂中讓學生參與等腰三角形性質(zhì)的探索,鼓勵學生用規(guī)范的數(shù)學言語表述證明過程,發(fā)展學生的數(shù)學語言能力和演繹推理能力,引導學生完成對等腰三角形的性質(zhì)的.證明;

  3.會利用等腰三角形的性質(zhì)解決簡單的實際問題,本堂課要達到以下要求:掌握等腰三角形的性質(zhì),會利用等腰三角形的性質(zhì)解決簡單的實際問題。

  三、問題診斷分析

  1.在這堂課中,學生可能遇到的第一個困難是等腰三角形性質(zhì)的發(fā)現(xiàn),特別是等腰三角形頂角的角平分線、底邊上的中線、底邊上的高相互重合這一性質(zhì),解決這一問題教師主要借助等腰三角形對稱性的研究,并引導學生理解“重合”這個詞的涵義。

  2.這堂課學生可能遇到的第二個問題是證明等腰三角形的性質(zhì),這一問題主要有三個原因:第一學生剛接觸幾何證明不久,對數(shù)學語言表達方式還不熟悉;這一困難,并不是一堂課就能解決的,而要在以后學習中幫助學生增強數(shù)學語言運用的能力,能有條理地、清晰地闡述自己的觀點。在這堂課中我通過等腰三角形性質(zhì)的證明,鼓勵學生運用規(guī)范的數(shù)學語言來表述,使學生數(shù)學語言能力和演繹推理能力得到提升;第二是添加輔助線的問題,這也是學生在證明中的一個難點。要解決這一問題,我借助等腰三角形是軸對稱圖形,通過研究等腰三角形的對稱軸,讓學生理解三種添加輔助線的方法,即作頂角角平分線、底邊上的高或底邊上的中線;第三是證明等腰三角形頂角角平分線、底邊上的中線、底邊上的高互相重合這一性質(zhì),要突破這一難點,我采用先證明等腰三角形兩底角相等這一性質(zhì),為學生搭一個臺階,更好地解決這個難點。

  3.這堂課中學生可能遇到的第三個問題是對等腰三角形的性質(zhì)的應用,特別是等腰三角形頂角的角平分線、底邊上的中線、底邊上的高相互重合這一性質(zhì)的應用;所以我在設(shè)計

  課堂練習時,注重數(shù)學知識與生活實際的聯(lián)系,提高學生數(shù)學學習的興趣,讓學生主動運用數(shù)學知識解決實際問題,并通過練習滲透分類討論、數(shù)形結(jié)合和方程的數(shù)學思想方法,讓學生形成自我的數(shù)學思維和能力,發(fā)展學生應用數(shù)學的意識。

  四、教法、學法:

  教法:

  常言道:“教必有法,教無定法”。所以我針對八年級學生的心理特點和認知能力水平,大膽應用生活中的素材,并作了精心的安排,充分體現(xiàn)數(shù)學是源于實踐又運用于生活。因此,本堂課的教學中,我以學生為主體,讓學生積極思維,勇于探索,主動地獲取知識。同時,采用了現(xiàn)代化教學技術(shù),激發(fā)學生的學習興趣,使整個課堂“活”起來,提高課堂效率。本堂課以生活中的一些例子為中心,讓學生親自嘗試,接受問題的挑戰(zhàn),充分展示自己的觀點和見解,給學生創(chuàng)設(shè)一個寬松愉快的學習氛圍,讓學生體驗成功的快樂,為終身學習和發(fā)展打打下堅實的基礎(chǔ)。

  本堂課的設(shè)計是以課程標準和教材為依據(jù),采用發(fā)現(xiàn)式教學。遵循因材施教的原則,堅持以學生為主體,充分發(fā)揮學生的主觀能動性。教學過程中,注重學生探究能力的培養(yǎng)。還課堂給學生,讓學生去親身體驗知識的產(chǎn)生過程,拓展學生的創(chuàng)造性思維。同時,注意加強對學生的啟發(fā)和引導,鼓勵培養(yǎng)學生大膽猜想,小心求證的科學研究的思想。

  學法:

  學生都渴望與他人交流,合作探究可使學生感受到合作的重要和團隊的精神力量,增強集體意識,所以本課采用小組合作的學習方式,讓學生遵循“情景問題?實踐探究?證明結(jié)論?解決實際問題”的主線進行學習。讓學生從活動中去觀察、探索、歸納知識,沿著知識發(fā)生,發(fā)展的脈絡(luò),學生經(jīng)過自己親身的實踐活動,形成自己的經(jīng)驗,產(chǎn)生對結(jié)論的感知,實現(xiàn)對知識意義的主動構(gòu)建。這不僅讓學生對所學內(nèi)容留下了深刻的印象,而且能力得到培養(yǎng),素質(zhì)得以提高,充分地調(diào)動學生學習的熱情,讓學生學會自主學習,學會探索問題的方法。

  五、教學支持條件分析

  在本堂課中,準備利用長方形紙片、剪刀、圓規(guī)和直尺等工具,剪出等腰三角形,利用等腰三角形,通過對折、多媒體動畫演示等方法發(fā)現(xiàn)等腰三角形的性質(zhì),并且借助多媒體信息技術(shù)與實際動手操作加強對所學知識的理解和運用。

  六、教學基本流程

  七、教學過程設(shè)計

2023初中數(shù)學教學教案13

  一、教學目標:

  1、知識目標:

 、倌軠蚀_理解絕對值的幾何意義和代數(shù)意義。

 、谀軠蚀_熟練地求一個有理數(shù)的絕對值。

 、凼箤W生知道絕對值是一個非負數(shù),能更深刻地理解相反數(shù)的概念。

  2、能力目標:

 、俪醪脚囵B(yǎng)學生觀察、分析、歸納和概括的思維能力。

 、诔醪脚囵B(yǎng)學生由抽象到具體再到抽象的思維能力。

  3、情感目標:

 、偻ㄟ^向?qū)W生滲透數(shù)形結(jié)合思想和分類討論的思想,讓學生領(lǐng)略到數(shù)學的奧妙,從而激起他們的好奇心和求知欲望。

  ②通過課堂上生動、活潑和愉快、輕松地學習,使學生感受到學習數(shù)學的快樂,從而增強他們的自信心。

  二、教學重點和難點

  教學重點:絕對值的幾何意義和代數(shù)意義,以及求一個數(shù)的.絕對值。

  教學難點:絕對值定義的得出、意義的理解及求一個負數(shù)的絕對值。

  三、教學方法

  啟發(fā)引導式、討論式和談話法

  四、教學過程

  (一)復習提問

  問題:相反數(shù)6與-6在數(shù)軸上與原點的距離各是多少?兩個相反數(shù)在數(shù)軸上的點有什么特征?

  (二)新授

  1、引入

  結(jié)合教材P63圖2-11和復習問題,講解6與-6的絕對值的意義。

  2、數(shù)a的絕對值的意義

 、賻缀我饬x

  一個數(shù)a的絕對值就是數(shù)軸上表示數(shù)a的點到原點的距離。數(shù)a的絕對值記作|a|.

  舉例說明數(shù)a的絕對值的幾何意義。(按教材P63的倒數(shù)第二段進行講解。)

  強調(diào):表示0的點與原點的距離是0,所以|0|=0.

  指出:表示“距離”的數(shù)是非負數(shù),所以絕對值是一個非負數(shù)。

 、诖鷶(shù)意義

  把有理數(shù)分成正數(shù)、零、負數(shù),根據(jù)絕對值的幾何意義可以得出絕對值的代數(shù)意義:一個正數(shù)的絕對值是它本身,一個負數(shù)的絕對值是它的相反數(shù),0的絕對值是0.

  用字母a表示數(shù),則絕對值的代數(shù)意義可以表示為:

  指出:絕對值的代數(shù)定義可以作為求一個數(shù)的絕對值的方法。

  3、例題精講

  例1.求8,-8的絕對值。

  按教材方法講解。

  例2.計算:|2.5|+|-3|-|-3|.

  解:|2.5|+|-3|-|-3|=2.5+3-3=6-3=3

  例3.已知一個數(shù)的絕對值等于2,求這個數(shù)。

  解:∵|2|=2,|-2|=2

  ∴這個數(shù)是2或-2.

  五、鞏固練習

  練習一:教材P641、2,P66習題2.4A組1、2.

  練習二:

  1、絕對值小于4的整數(shù)是____.

  2、絕對值最小的數(shù)是____.

  已知|2x-1|+|y-2|=0,求代數(shù)式3x2y的值。

  六、歸納小結(jié)

  本節(jié)課從幾何與代數(shù)兩個方面說明了絕對值的意義,由絕對值的意義可知,任何數(shù)的絕對值都是非負數(shù)。絕對值的代數(shù)意義可以作為求一個數(shù)的絕對值的方法。

  七、布置作業(yè)

  教材P66習題2.4A組3、4、5.

2023初中數(shù)學教學教案14

  目標

  1聯(lián)系生活中的具體事物,通過觀察和動手操作,初步體會生活中的對稱現(xiàn)象,認識軸對稱圖形的基本特征,會識別并能做出一些簡單的軸對稱圖形。

  2.在認識、制作和欣賞軸對稱圖形的過程中,感受到物體圖形的對稱美,激發(fā)學生對數(shù)學學習的積極情感。

  重點難點

  理解軸對稱圖形的.基本特征

  教具

  準備 剪刀、紙(含平行四邊形、字母N S)、教學掛圖、直尺

  教學方法

  手段 觀察、比較、討論、動手操作

  教學過程

  一。新課

  1.教師取一個門框上固定門的鉸連讓學生觀察是不是左右對稱?

  2.出示教學掛圖:天安門、飛機、獎杯的實物圖片

  將實物圖片進一步抽象為平面圖形,對折以后問學生發(fā)現(xiàn)了什么?

  生:對折后兩邊能完全重合。

  師;對折后能完全重合的圖形就是軸對稱圖形。折痕所在的這條直線叫做對稱軸。

  教師先示范,讓學生認識天安門城樓圖的對稱軸,然后讓學生再找出飛機圖、獎杯圖的對稱軸各在哪里。

  3.練習題:(出示小黑板)

  (1)P57“試一試”

  判斷哪幾個圖形是軸對稱圖形?試著畫出對稱軸。

  估計學生會將平行四邊形看作是軸對稱圖形,可讓兩個學生到講臺前用平行四邊形紙對折一下,看對折以后兩部分是否完全重合。由此得出結(jié)論;平行四邊形不是軸對稱圖形。

  (2)用剪刀和紙剪一個軸對稱圖形。

  教學

  過程 二。練習

  1.出示掛圖:(p58“想想做做”第1題)

  判斷哪些圖形是軸對稱圖形?

  生:豎琴圖、轎車圖、五角星圖、鐵錨圖、科技標志圖、中國農(nóng)業(yè)銀行標志圖

  師:鑰匙圖和紫荊花圖為什么不是?

  生:因為對折以后兩部分沒有完全重合。

  2.看書p58“想想做做”第2題

  判斷哪些英文字母是軸對稱圖形?

  生:A、C、T、M、X(有可能有的學生沒有選C,還有可能有的學生選N、S、Z)

  師:沒有選C的同學除了豎著對折,看看橫著、斜著對折你有沒有去試一試?認為N、S、Z是軸對稱圖形的我請兩個學生到講臺前用表示字母N、S的紙對折一下,看看對折以后兩部分有沒有完全重合?

  學生試完以后會發(fā)現(xiàn)兩部分沒有完全重合。

  教師再將字母N橫過來就變成了字母Z,同樣道理,兩部分也不會完全重合。

2023初中數(shù)學教學教案15

  一、教學目的:

  1、理解并掌握菱形的定義及兩個判定方法;會用這些判定方法進行有關(guān)的論證和計算;

  2、在菱形的判定方法的探索與綜合應用中,培養(yǎng)學生的觀察能力、動手能力及邏輯思維能力.

  二、重點、難點

  1、教學重點:菱形的兩個判定方法.

  2、教學難點:判定方法的證明方法及運用.

  三、例題的意圖分析

  本節(jié)課安排了兩個例題,其中例1是教材P109的例3,例2是一道補充的題目,這兩個題目都是菱形判定方法的直接的運用,主要目的是能讓學生掌握菱形的判定方法,并會用這些判定方法進行有關(guān)的論證和計算.這些題目的推理都比較簡單,學生掌握起來不會有什么困難,可以讓學生自己去完成.程度好一些的班級,可以選講例3.

  四、課堂引入

  1、復習

  (1)菱形的定義:一組鄰邊相等的平行四邊形;

  (2)菱形的性質(zhì)1:菱形的四條邊都相等;

  性質(zhì)2:菱形的對角線互相平分,并且每條對角線平分一組對角;

  (3)運用菱形的定義進行菱形的判定,應具備幾個條件?(判定:2個條件)

  2、【問題】要判定一個四邊形是菱形,除根據(jù)定義判定外,還有其它的判定方法嗎?

  3、【探究】(教材P109的探究)用一長一短兩根木條,在它們的中點處固定一個小釘,做成一個可轉(zhuǎn)動的十字,四周圍上一根橡皮筋,做成一個四邊形.轉(zhuǎn)動木條,這個四邊形什么時候變成菱形?

  通過演示,容易得到:

  菱形判定方法1對角線互相垂直的平行四邊形是菱形.

  注意此方法包括兩個條件:(1)是一個平行四邊形;(2)兩條對角線互相垂直.

  通過教材P109下面菱形的作圖,可以得到從一般四邊形直接判定菱形的方法:

  菱形判定方法2四邊都相等的四邊形是菱形.

  五、例習題分析

  例1(教材P109的例3)略

  例2(補充)已知:如圖ABCD的`對角線AC的垂直平分線與邊AD、BC分別交于E、F.

  求證:四邊形AFCE是菱形.

  證明:∵四邊形ABCD是平行四邊形,

  ∴AE∥FC.

  ∴∠1=∠2.

  又∠AOE=∠COF,AO=CO,

  ∴△AOE≌△COF.

  ∴EO=FO.

  ∴四邊形AFCE是平行四邊形.

  又EF⊥AC,

  ∴AFCE是菱形(對角線互相垂直的平行四邊形是菱形).

  ※例3(選講)已知:如圖,△ABC中,∠ACB=90°,BE平分∠ABC,CD⊥AB與D,EH⊥AB于H,CD交BE于F.

  求證:四邊形CEHF為菱形.

  略證:易證CF∥EH,CE=EH,在Rt△BCE中,∠CBE+∠CEB=90°,在Rt△BDF中,∠DBF+∠DFB=90°,因為∠CBE=∠DBF,∠CFE=∠DFB,所以∠CEB=∠CFE,所以CE=CF.

  所以,CF=CE=EH,CF∥EH,所以四邊形CEHF為菱形.

  六、隨堂練習

  1、填空:

  (1)對角線互相平分的四邊形是;

  (2)對角線互相垂直平分的四邊形是________;

  (3)對角線相等且互相平分的四邊形是________;

  (4)兩組對邊分別平行,且對角線的四邊形是菱形.

  2、畫一個菱形,使它的兩條對角線長分別為6cm、8cm.

  3、如圖,O是矩形ABCD的對角線的交點,DE∥AC,CE∥BD,DE和CE相交于E,求證:四邊形OCED是菱形。

  七、課后練習

  1、下列條件中,能判定四邊形是菱形的是

  (A)兩條對角線相等(B)兩條對角線互相垂直

  (C)兩條對角線相等且互相垂直(D)兩條對角線互相垂直平分

  2、已知:如圖,M是等腰三角形ABC底邊BC上的中點,DM⊥AB,EF⊥AB,ME⊥AC,DG⊥AC.求證:四邊形MEND是菱形.

  3、做一做:

  設(shè)計一個由菱形組成的花邊圖案.花邊的長為15cm,寬為4cm,由有一條對角線在同一條直線上的四個菱形組成,前一個菱形對角線的交點,是后一個菱形的一個頂點.畫出花邊圖形.

【初中數(shù)學教學教案】相關(guān)文章:

初中數(shù)學教學教案12-19

初中數(shù)學的教學教案02-05

2023初中數(shù)學教學教案02-14

初中數(shù)學教學教案15篇12-19

初中數(shù)學教學教案(15篇)12-19

初中數(shù)學教學教案(精選20篇)12-23

初中數(shù)學教學教案(精選15篇)12-19

初中數(shù)學教學教案精選15篇12-19

初中數(shù)學的教學教案7篇02-05

初中數(shù)學的教學教案(7篇)02-05