- 平行四邊形教案 推薦度:
- 平行四邊形教案 推薦度:
- 平行四邊形教案 推薦度:
- 相關(guān)推薦
實(shí)用的平行四邊形教案范文匯編10篇
作為一名優(yōu)秀的教育工作者,有必要進(jìn)行細(xì)致的教案準(zhǔn)備工作,教案是教材及大綱與課堂教學(xué)的紐帶和橋梁。教案要怎么寫(xiě)呢?以下是小編整理的平行四邊形教案10篇,僅供參考,歡迎大家閱讀。
平行四邊形教案 篇1
教學(xué)過(guò)程
一、課堂引入
1.平行四邊形的性質(zhì);平行四邊形的判定;它們之間有什么聯(lián)系?
2.你能說(shuō)說(shuō)平行四邊形性質(zhì)與判定的用途嗎?
。ù穑浩叫兴倪呅沃R(shí)的運(yùn)用包括三個(gè)方面:一是直接運(yùn)用平行四邊形的性質(zhì)去解決某些問(wèn)題.例如求角的度數(shù),線段的長(zhǎng)度,證明角相等或線段相等等;二是判定一個(gè)四邊形是平行四邊形,從而判定直線平行等;三是先判定一個(gè)四邊形是平行四邊形,然后再眼再用平行四邊形的性質(zhì)去解決某些問(wèn)題.)
3.創(chuàng)設(shè)情境
實(shí)驗(yàn):請(qǐng)同學(xué)們思考:將任意一個(gè)三角形分成四個(gè)全等的三角形,你是如何切割的?(答案如圖)
圖中有幾個(gè)平行四邊形?你是如何判斷的`?
二、例習(xí)題分析
例1(教材P98例4)如圖,點(diǎn)D、E、分別為△ABC邊AB、AC的中點(diǎn),求證:DE∥BC且DE=BC.
分析:所證明的結(jié)論既有平行關(guān)系,又有數(shù)量關(guān)系,聯(lián)想已學(xué)過(guò)的知識(shí),可以把要證明的內(nèi)容轉(zhuǎn)化到一個(gè)平行四邊形中,利用平行四邊形的對(duì)邊平行且相等的性質(zhì)來(lái)證明結(jié)論成立,從而使問(wèn)題得到解決,這就需要添加適當(dāng)?shù)妮o助線來(lái)構(gòu)造平行四邊形.
方法1:如圖(1),延長(zhǎng)DE到F,使EF=DE,連接CF,由△ADE≌△CFE,可得AD∥FC,且AD=FC,因此有BD∥FC,BD=FC,所以四邊形BCFD是平行四邊形.所以DF∥BC,DF=BC,因?yàn)镈E=DF,所以DE∥BC且DE=BC.
。ㄒ部梢赃^(guò)點(diǎn)C作CF∥AB交DE的延長(zhǎng)線于F點(diǎn),證明方法與上面大體相同)
方法2:如圖(2),延長(zhǎng)DE到F,使EF=DE,連接CF、CD和AF,又AE=EC,所以四邊形ADCF是平行四邊形.所以AD∥FC,且AD=FC.因?yàn)锳D=BD,所以BD∥FC,且BD=FC.所以四邊形ADCF是平行四邊形.所以DF∥BC,且DF=BC,因?yàn)镈E=DF,所以DE∥BC且DE=BC.
定義:連接三角形兩邊中點(diǎn)的線段叫做三角形的中位線.
【思考】:
。1)想一想:①一個(gè)三角形的中位線共有幾條?②三角形的中位線與中線有什么區(qū)別?
。2)三角形的中位線與第三邊有怎樣的關(guān)系?
。ù穑海1)一個(gè)三角形的中位線共有三條;三角形的中位線與中線的區(qū)別主要是線段的端點(diǎn)不同.中位線是中點(diǎn)與中點(diǎn)的連線;中線是頂點(diǎn)與對(duì)邊中點(diǎn)的連線.(2)三角形的中位線與第三邊的關(guān)系:三角形的中位線平行與第三邊,且等于第三邊的一半.)
三角形中位線的性質(zhì):三角形的中位線平行與第三邊,且等于第三邊的一半。
平行四邊形教案 篇2
《平行四邊形的初步認(rèn)識(shí)》第1課時(shí)教案分析
備課時(shí)間:20xx年9月5日
上課時(shí)間: 年 月 日
教學(xué)內(nèi)容:教材第12~16頁(yè)例1和“想想做做”第1~5題。
教學(xué)目標(biāo):
1、使學(xué)生通過(guò)觀察、比較、分類,認(rèn)識(shí)四邊形、五邊形、六邊形等平面圖形,能判斷一個(gè)由線段圍成的圖形是幾邊形,能按要求圍出或剪出多邊形。
2、使學(xué)生經(jīng)歷從實(shí)際中抽象出圖形,以及觀察、實(shí)踐操作等數(shù)學(xué)活動(dòng),進(jìn)一步感受分類的思想,積累學(xué)習(xí)平面圖形的初步經(jīng)驗(yàn);體會(huì)不同圖形邊數(shù)的`特點(diǎn),發(fā)展相應(yīng)的空間觀念。
3、使學(xué)生逐步形成參與數(shù)學(xué)活動(dòng)的意識(shí),培養(yǎng)獨(dú)立思考、主動(dòng)交流的學(xué)習(xí)習(xí)慣。
教學(xué)重點(diǎn):
認(rèn)識(shí)四邊形、五邊形、六邊形等平面圖形。
教學(xué)難點(diǎn):
能根據(jù)要求把一個(gè)多邊形分成不同的圖形或者是數(shù)圖形的個(gè)數(shù)。
教具或?qū)W具準(zhǔn)備:
師生每人準(zhǔn)備小棒若干根,釘子板1個(gè),四邊形紙片2張,正方形紙片1張,剪刀1把。
教學(xué)過(guò)程:
一、初步感知
1.回顧已知圖形。
今天,老師帶大家到有趣的“圖形王國(guó)”去游一游、看一看。(出示如下圖形)請(qǐng)看,這里有一些我們學(xué)過(guò)的圖形。你能說(shuō)出它們的名稱嗎?
(1)讓學(xué)生明確第(1)題的要求。
出示兩張四邊形紙片,讓學(xué)生想想怎樣剪成兩個(gè)三角形,怎樣剪成一個(gè)三角形和一個(gè)四邊形。
學(xué)生操作剪圖形,教師巡視。
(2)讓學(xué)生明確第(2)題的要求。
出示正方形紙片,要求學(xué)生想想怎樣可以剪下一個(gè)三角形。
學(xué)生操作剪下一個(gè)三角形。
展示交流:你是怎樣剪的?剩下的部分是什么圖形?
6、做“想想做做”第5題。
讓學(xué)生找一找、數(shù)一數(shù),能找到幾個(gè)就找?guī)讉(gè);然后交流自己找到了幾個(gè)四邊形。
四、總結(jié)評(píng)價(jià)
交流:今天我們又去了圖形王國(guó),你有哪些新收獲?你是怎樣學(xué)習(xí)這些知識(shí)的?
五、布置作業(yè)
《補(bǔ)充習(xí)題》第 頁(yè)。
板書(shū)設(shè)計(jì):
課后筆記:
平行四邊形教案 篇3
教學(xué)目標(biāo)設(shè)計(jì):
1、激發(fā)主動(dòng)探索數(shù)學(xué)問(wèn)題的興趣,經(jīng)歷平行四邊形面積計(jì)算公式的推導(dǎo)過(guò)程,會(huì)運(yùn)用公式求平行四邊形的面積。
2、體會(huì)“等積變形”和“轉(zhuǎn)化”的數(shù)學(xué)思想和方法,發(fā)展空間觀念。
3、培養(yǎng)初步的推理能力和合作意識(shí),以及解決實(shí)際問(wèn)題的能力。
教學(xué)重點(diǎn):探究平行四邊形的面積公式
教學(xué)難點(diǎn):理解平行四邊形的面積計(jì)算公式的推導(dǎo)過(guò)程
教學(xué)過(guò)程設(shè)計(jì):
一、創(chuàng)設(shè)情境,激發(fā)矛盾
拿出一個(gè)長(zhǎng)方形框架,提問(wèn):這個(gè)框架所圍成圖形的面積你會(huì)求嗎?你是怎樣想的?根據(jù)學(xué)生的回答,適時(shí)板書(shū):長(zhǎng)方形面積=長(zhǎng)×寬
教師捏住兩角輕微拉動(dòng)長(zhǎng)方形框架,使它稍微變形成一個(gè)平行四邊形。提問(wèn):它圍成的圖形面積你會(huì)求嗎?你是怎樣想的?根據(jù)學(xué)生的回答,適時(shí)板書(shū):平行四邊形面積=底邊長(zhǎng)×鄰邊長(zhǎng)
學(xué)情預(yù)設(shè):學(xué)生充分發(fā)表自己的看法,大多數(shù)學(xué)生會(huì)受以前知識(shí)經(jīng)驗(yàn)和教師剛才設(shè)問(wèn)的影響,認(rèn)為平行四邊形的面積等于底邊長(zhǎng)×鄰邊長(zhǎng)。
教師繼續(xù)拉動(dòng)平行四邊形框架,使變形后的平行四邊形越來(lái)越扁,到最后拉成一個(gè)很扁的平行四邊形,提問(wèn):這些平行四邊形的面積也等于底
邊長(zhǎng)×鄰邊長(zhǎng)嗎?
今天這節(jié)課我們就來(lái)研究“平行四邊形的面積”。教師板書(shū)課題。
學(xué)情預(yù)設(shè):隨著教師繼續(xù)拉動(dòng)的平行四邊形越來(lái)越扁的變化,學(xué)生的原有知識(shí)經(jīng)驗(yàn)體系開(kāi)始坍塌。這種認(rèn)知平衡一旦被打破,學(xué)生的思維就想開(kāi)了閘的洪水一樣一發(fā)不可收拾:為什么用底邊長(zhǎng)乘鄰邊長(zhǎng)不能解決平行四邊形面積是多少問(wèn)題?問(wèn)題出在哪里呢?
二、另辟蹊徑,探究新知
1、尋找根源,另辟蹊徑
教師邊演示長(zhǎng)方形漸變平行四邊形的過(guò)程,邊引導(dǎo)學(xué)生思考:平行四邊形為什么不能用長(zhǎng)方形的長(zhǎng)與寬演變而來(lái)的底邊長(zhǎng)與鄰邊長(zhǎng)相乘來(lái)求面積呢?
引導(dǎo)學(xué)生思考:原來(lái)是平行四邊形的面積變得越來(lái)越小了,那平行四邊形的面積到底與什么有關(guān)呢?該怎樣來(lái)求平行四邊形的面積呢?
學(xué)情預(yù)設(shè):學(xué)生在教師的引導(dǎo)下發(fā)現(xiàn),在教師的操作過(guò)程中,底邊與鄰邊的長(zhǎng)沒(méi)有發(fā)生變化,也就是說(shuō),底邊長(zhǎng)與鄰邊長(zhǎng)相乘的積應(yīng)該也是不變的,但明顯的事實(shí)是學(xué)生看到了平行四邊形在越拉越扁,平行四邊形的面積在越變?cè)叫?磥?lái)此路不通,那又該在哪里找出路呢?
2、適時(shí)引導(dǎo),自主探索
教師結(jié)合剛才的板書(shū)引導(dǎo)學(xué)生發(fā)現(xiàn),我們已經(jīng)會(huì)計(jì)算長(zhǎng)方形的面積了,是否能把平行四邊形轉(zhuǎn)化成長(zhǎng)方形來(lái)求面積呢?
。1)學(xué)生操作
學(xué)生動(dòng)手實(shí)踐,尋求方法。
學(xué)情預(yù)設(shè):學(xué)生可能會(huì)有三種方法出現(xiàn)。
第一種是沿著平行四邊形的頂點(diǎn)做的高剪開(kāi),通過(guò)平移,拼出長(zhǎng)方形。 第二種是沿著平行四邊形中間任意一高剪開(kāi)。
第三種是沿平行四邊形兩端的兩個(gè)頂點(diǎn)做的高剪開(kāi),把剪下來(lái)的兩個(gè)小直角三角形拼成一個(gè)長(zhǎng)方形,再和剪后得出的長(zhǎng)方形拼成一個(gè)長(zhǎng)方形。
。2)觀察比較
剛才同學(xué)們把平行四邊形轉(zhuǎn)化成長(zhǎng)方形,在操作時(shí)有一個(gè)共同點(diǎn),是什么呢?為什么要這樣呢?
。3)課件演示
是不是任意一個(gè)平行四邊形都能轉(zhuǎn)化成一個(gè)長(zhǎng)方形呢?請(qǐng)同學(xué)們仔細(xì)觀察大屏幕,讓我們?cè)賮?lái)體會(huì)一下。
3、公式推導(dǎo),形成模型
既然我們可以把一個(gè)平行四邊形轉(zhuǎn)化成一個(gè)長(zhǎng)方形,那么轉(zhuǎn)化前的平行四邊形究竟和轉(zhuǎn)化后的長(zhǎng)方形有怎樣的聯(lián)系呢?怎樣能想出平行四邊形的面積怎么計(jì)算呢?
先獨(dú)立思考,后小組合作、討論,如小組有困難,可提供“思考提示”。
A、拼成的長(zhǎng)方形和原來(lái)的平行四邊形比,什么變了?什么沒(méi)有改變?
B、拼成的長(zhǎng)方形的長(zhǎng)和寬與原來(lái)的平行四邊形的底和高有什么關(guān)系?
C、你能根據(jù)長(zhǎng)方形面積計(jì)算公式推導(dǎo)出平行四邊形的面積計(jì)算公式嗎?)
學(xué)情預(yù)設(shè):學(xué)生通過(guò)討論很快就能得出拼成的長(zhǎng)方形和原來(lái)的平行四邊形之間的關(guān)系,并據(jù)此推導(dǎo)出平行四邊形的面積計(jì)算公式。在此環(huán)節(jié)中,教師要引導(dǎo)學(xué)生盡量用完整、條理的'語(yǔ)言表達(dá)其推導(dǎo)思路:“把一個(gè)平行四邊形轉(zhuǎn)化成為一個(gè)長(zhǎng)方形,它的面積與原來(lái)的平行四邊形的面積相等。這個(gè)長(zhǎng)方形的長(zhǎng)與平行四邊形的底相等,這個(gè)長(zhǎng)方形的寬與平行四邊形的高相等,因?yàn)殚L(zhǎng)方形的面積等于長(zhǎng)乘寬,所以平行四邊形的面積等于底乘高!辈⒐桨鍟(shū)如下:
長(zhǎng)方形的面積 = 長(zhǎng) × 寬
平行四邊形的面積 = 底 × 高
4、變化對(duì)比,加深理解
引導(dǎo)學(xué)生比較前后兩種變化情況,思考:第一次的長(zhǎng)方形變成平行四邊形與第二次的平行四邊形變成長(zhǎng)方形,這兩種情況有什么不一樣?哪種變化能說(shuō)明平行四邊形的面積計(jì)算方法的來(lái)源呢?為什么?
5、自學(xué)字母公式,體會(huì)作用
請(qǐng)同學(xué)們打開(kāi)課本第81頁(yè),告訴老師,如果用字母表示平行四邊形的
面積計(jì)算公式,應(yīng)該怎樣表示?你覺(jué)得用字母表達(dá)式比文字表達(dá)式好在哪里?
三、實(shí)踐應(yīng)用
1、出示課本第82頁(yè)題目,一個(gè)平行四邊形的停車位底邊長(zhǎng)5m,高2.5m,它的面積是多少?(學(xué)生獨(dú)立列式解答,并說(shuō)出列式的根據(jù))
2、看圖口述平行四邊形的面積。
3分米 2.5厘米
3、這個(gè)平行四邊形的面積你會(huì)求嗎?你是怎樣想的?
4、分別計(jì)算圖中每個(gè)平行四邊形的面積,你發(fā)現(xiàn)了什么?(單位:厘米)這樣的平行四邊形還能再畫(huà)多少個(gè)?
平行四邊形教案 篇4
教學(xué)目標(biāo):
。1)引導(dǎo)學(xué)生在探究、理解的基礎(chǔ)上,掌握面積計(jì)算公式,體驗(yàn)其推導(dǎo)過(guò)程。能正確計(jì)算平行四邊形面積。
。2)通過(guò)對(duì)圖形的觀察、比較和動(dòng)手操作,發(fā)展學(xué)生的空間觀念,滲透轉(zhuǎn)化和平移的思想。
。3)在數(shù)學(xué)活動(dòng)中,激發(fā)學(xué)生學(xué)習(xí)興趣,培養(yǎng)探究的精神,讓學(xué)生感受數(shù)學(xué)與生活的密切聯(lián)系。
教學(xué)重點(diǎn):
理解并掌握平行四邊形的面積計(jì)算公式,并能用公式解決實(shí)際問(wèn)題。
教學(xué)難點(diǎn):
理解平行四邊形的面積公式的推導(dǎo)過(guò)程。
教具、學(xué)具準(zhǔn)備:
課件、長(zhǎng)方形和平行四邊形圖片、剪刀、平行四邊形框架等。
教學(xué)過(guò)程:
一、創(chuàng)設(shè)情境、導(dǎo)入新課。
大家請(qǐng)看大屏幕(欣賞綏濱農(nóng)場(chǎng)風(fēng)景圖片),我們學(xué)校門口有兩個(gè)花壇,小明認(rèn)為長(zhǎng)方形的花壇大,而小剛認(rèn)為平行四邊形的花壇大,誰(shuí)說(shuō)的對(duì)呢?你想來(lái)幫他們?cè)u(píng)判一下嗎?(想)
你認(rèn)為要根據(jù)什么來(lái)確定花壇的大小呢?(花壇的面積)長(zhǎng)方形的面積我們會(huì)求,那平行四邊形的面積我們?cè)鯓忧竽?這節(jié)課,我們就共同來(lái)探討平行四邊形的面積。(板書(shū)課題)
出示長(zhǎng)方形和平行四邊形教具,引導(dǎo)學(xué)生觀察后說(shuō)一說(shuō)長(zhǎng)方形和平行四邊形的各部分名稱。長(zhǎng)方形與平行四邊形有什么區(qū)別呢?(引導(dǎo)學(xué)生說(shuō)出長(zhǎng)方形四個(gè)角都是直角)(板書(shū)各部分名稱,標(biāo)注直角符號(hào)。)請(qǐng)大家回憶一下,我們以前學(xué)長(zhǎng)方形面積公式時(shí)用過(guò)什么方法來(lái)求面積,誰(shuí)來(lái)說(shuō)一說(shuō)?我們用過(guò)數(shù)方格的方式求過(guò)長(zhǎng)方形和正方形的面積。那我們能不能也用數(shù)方格的方式求平行四邊形的面積呢?(課件演示)
二、自主探究,合作驗(yàn)證
探究一:用數(shù)方格的的方法探究平行四邊形的面積。
請(qǐng)大家打開(kāi)你們的百寶箱(學(xué)具袋),里面有老師把兩個(gè)花壇按比例縮小成的兩張卡片,自己判斷一下能不能用數(shù)方格的方法來(lái)求平行四邊形的面積,認(rèn)真按提示填表。出示溫馨提示:
①在兩個(gè)圖形上數(shù)一數(shù)方格的數(shù)量,然后填寫(xiě)下表。(一個(gè)方格代表1㎡,不滿一格的都按半格計(jì)算。)教師強(qiáng)調(diào)半個(gè)格的意思。
② 填完表后,同學(xué)們相互議一議,并談一談發(fā)現(xiàn)。
你是怎么數(shù)的?你有什么發(fā)現(xiàn)嗎?能猜測(cè)一下平行四邊形的面積公式是什么嗎?(學(xué)生匯報(bào))
探究二:用割補(bǔ)的方法來(lái)驗(yàn)證猜測(cè)。
小明和小剛通過(guò)數(shù)格子后和我們有了一樣的猜測(cè),但為了證實(shí)自己的猜測(cè)的正確性,想驗(yàn)證一下。同時(shí)也想總結(jié)出平行四邊形的面積公式。你想?yún)⑴c嗎?學(xué)生小組討論。(鼓勵(lì)學(xué)生盡量想辦法,辦法不唯一。)
我們已經(jīng)會(huì)求哪幾種圖形的面積了?(預(yù)設(shè):學(xué)生回答會(huì)求長(zhǎng)方形和正方形的面積),接著小組合作:大家想想辦法,試試能不能把平行四邊形轉(zhuǎn)化成我們學(xué)過(guò)的'圖形,然后在求它的面積呢?請(qǐng)大家拿起你的小剪刀試試看吧!出示合作探究提綱:(出示教學(xué)課件)
(1)用剪刀將平行四邊形轉(zhuǎn)化成我們學(xué)過(guò)的其他圖形。(剪的次數(shù)越少越好。)
。2)剪完后試一試能拼成什么圖形?
師:你轉(zhuǎn)化成什么圖形了?你能說(shuō)一說(shuō)轉(zhuǎn)化過(guò)程嗎?轉(zhuǎn)化后的圖形和平行四邊形各部分是什么關(guān)系?下面我們回顧一下我們的發(fā)現(xiàn)過(guò)程(大屏幕出示):
回顧發(fā)現(xiàn)過(guò)程:
1、把平行四邊形轉(zhuǎn)化成長(zhǎng)方形后,( )沒(méi)變。因?yàn)殚L(zhǎng)方形的長(zhǎng)等于平行四邊形的( ),寬等于平行四邊形的( ),所以平行四邊形的面積=( ),用字母表示是( )
2、求平行四邊形的面積必須知道平行四邊形的( ) 和( )。
探究過(guò)程小結(jié)(板書(shū))
師:小剛和小明馬上到校門前測(cè)量了長(zhǎng)方形和平行四邊形。得出:長(zhǎng)方形的長(zhǎng)是6米,寬是4米,平行四邊形的底是6米,高是4米。
然后他們手拉手找到老師說(shuō)了一些話。你知道他們說(shuō)了什么?
生:長(zhǎng)方形和平行四邊形的面積一樣大。為什么會(huì)一樣大?誰(shuí)來(lái)講解一下。(指名板演)
三、運(yùn)用新知,練中發(fā)現(xiàn)
1、基本練習(xí)
。1)口算下面各平行四邊形的面積
A、底12米,高3米:
B、高 4米,底9米;
C、底36米,高1米
通過(guò)這組練習(xí),你有什么發(fā)現(xiàn)嗎?(教學(xué)課件)
發(fā)現(xiàn)一:發(fā)現(xiàn)面積相等的平行四邊形,不一定等底等高。
(2)畫(huà)平行四邊形比賽(大屏幕出示比賽規(guī)則)
比賽規(guī)則:
1、拿出百寶箱中的方格紙。在方格紙上的兩條平行線間,畫(huà)底為六個(gè)格(底固定),看能畫(huà)出多少個(gè)平行四邊形。
2、誰(shuí)在一分鐘之內(nèi)畫(huà)的多,誰(shuí)就獲勝。學(xué)生畫(huà)完后(用實(shí)物展示臺(tái)展示,引導(dǎo)學(xué)生發(fā)現(xiàn))
發(fā)現(xiàn)二:1.發(fā)現(xiàn)只要等底等高,平行四邊形面積就一定相等。
2.等底等高的平行四邊形,形狀不一定完全相同。
四、總結(jié)收獲,拓展延伸
1、通過(guò)這節(jié)課的學(xué)習(xí),你知道了什么?
2、小明和小剛學(xué)完這節(jié)課后把他們的收獲寫(xiě)了下來(lái),你們想知道是什么嗎?
大屏幕出示(教學(xué)課件演示)
平行四邊形,特點(diǎn)記心中。
面積同樣大,形狀可不同。
等底又等高,面積準(zhǔn)相同。
要是求面積,底高來(lái)相乘。
(齊讀) 希望同學(xué)們也要向小明和小剛一樣,經(jīng)常把學(xué)過(guò)的知識(shí)進(jìn)行總結(jié),做一個(gè)學(xué)習(xí)上的有心人。
拓展延伸
請(qǐng)大家看老師的演示。(用平行四邊形框架演示由長(zhǎng)方形拉成平行四邊形)。如果把長(zhǎng)方形拉成平行四邊形,周長(zhǎng)和面積有沒(méi)有變化呢?課后我們可以小組合作,親自動(dòng)手做實(shí)驗(yàn)進(jìn)行研究,并把發(fā)現(xiàn)記錄下來(lái),作為今天的作業(yè)。
五、板書(shū)設(shè)計(jì):
平行四邊形教案 篇5
教學(xué)目標(biāo):
1、知識(shí)目標(biāo):經(jīng)歷動(dòng)手操作、討論、歸納等探討平行四邊形面積公式,并能用字母表示,會(huì)用公式計(jì)算平行四邊形面積。
2、能力目標(biāo):在剪一剪、拼一拼中發(fā)展空間觀念;在想一想、看一看中初步感知“轉(zhuǎn)化”的數(shù)學(xué)思想和方法。
3、過(guò)程與方法:通過(guò)觀察、操作、測(cè)量、思考、討論交流等數(shù)學(xué)活動(dòng),體會(huì)轉(zhuǎn)化等數(shù)學(xué)方法,發(fā)展推理能力。
4、情感態(tài)度與價(jià)值觀:使學(xué)生在探索平行四邊形面積的計(jì)算方法中,獲得成功的體驗(yàn),形成積極的數(shù)學(xué)學(xué)習(xí)情感
教學(xué)重點(diǎn):
讓學(xué)生充分利用手中的學(xué)具,在動(dòng)手操作推導(dǎo)平行四邊形面積公式的過(guò)程中,理解并掌握平行四邊形面積的計(jì)算方法,能正確計(jì)算平行四邊形的面積。
教學(xué)難點(diǎn):
讓學(xué)生在推導(dǎo)和驗(yàn)證平行四邊形面積公式的過(guò)程中,充分體驗(yàn)轉(zhuǎn)化的數(shù)學(xué)思想,形成一定探究意識(shí)和能力,發(fā)展空間觀念。
教學(xué)準(zhǔn)備:
平行四邊形卡片、剪刀、三角板
教學(xué)過(guò)程:
一、課前復(fù)習(xí),回顧舊知
1、 長(zhǎng)方形面積公式是什么?(勾起學(xué)生對(duì)已有知識(shí)的回顧,為學(xué)習(xí)平行四邊形面積公式做鋪墊)
2、 生:長(zhǎng)方形面積=長(zhǎng)×寬。
二、提出問(wèn)題,導(dǎo)入新課
1、出示主題圖:(看課本第86頁(yè)的圖)
。1)、發(fā)現(xiàn)了哪些圖形?你會(huì)求哪些圖形的面積?
。2)、故事引入
學(xué)校門前有兩個(gè)大花壇,左邊的是長(zhǎng)方形的,右邊的是平行四邊形的,F(xiàn)在準(zhǔn)備把花壇里面的草換成美麗的蝴蝶花,這個(gè)分別交給五(1)班和五(2)班負(fù)責(zé)。這時(shí)同學(xué)們爭(zhēng)論開(kāi)了,有的同學(xué)說(shuō)長(zhǎng)方形的面積大,有的說(shuō)平行四邊形的面積大,又有的同學(xué)說(shuō)“還不是一樣大嘛?”同學(xué)們,今天就讓我們來(lái)幫幫他們判斷一下哪個(gè)花壇的面積大。
師:我把花壇縮小成我手上的圖形(出示縮小的兩個(gè)圖形,讓學(xué)生比較)
比較方法:
1、疊起來(lái)比;(比不了,形狀不一樣)
2、數(shù)方格比。
師:平行四邊形的面積還有其它數(shù)法嗎?(引出轉(zhuǎn)化成長(zhǎng)方形的方法)在實(shí)際問(wèn)題上,這種方法行嗎?不行,麻煩而且不實(shí)際,能不能像計(jì)算長(zhǎng)方形面積那樣計(jì)算出來(lái)呢?今天,就讓我們來(lái)探討平行四邊形的面積的計(jì)算方法。(板書(shū)課題)
三、探索發(fā)現(xiàn)、推導(dǎo)公式
1、猜想:平行四邊形的面積跟什么有關(guān)系呢?(板書(shū):底和高;兩條邊)
2、驗(yàn)證:科學(xué)是從猜想到驗(yàn)證的一個(gè)過(guò)程,現(xiàn)在就讓我們用事實(shí)來(lái)說(shuō)話吧。
課本中的同學(xué)們也忙開(kāi)了,讓我們來(lái)看看他們?cè)诟墒裁?打開(kāi)88頁(yè),看看課本上半頁(yè)的圖。他們?cè)诟墒裁茨兀浚ò哑叫兴倪呅渭羝闯砷L(zhǎng)方形)
現(xiàn)在,同學(xué)們也用剪拼的`辦法,把平行四邊形轉(zhuǎn)化成長(zhǎng)方形,每個(gè)學(xué)習(xí)小組長(zhǎng)的手上都有一個(gè)平行四邊形,每個(gè)小組的同學(xué)合作,剪一剪,拼一拼,看看那組的同學(xué)合作最好,先來(lái)看看我們的導(dǎo)學(xué)提綱。
小組根據(jù)導(dǎo)學(xué)提綱進(jìn)行合作學(xué)習(xí)
(1)怎樣把平行四邊形紙片剪一刀,拼成一個(gè)長(zhǎng)方形呢?(剪前,小組要先討論出怎樣剪,拼成的才一定是長(zhǎng)方形。)
。2)討論:平行四邊形轉(zhuǎn)化成長(zhǎng)方形后面積變了嗎?
。3)討論:轉(zhuǎn)化成的長(zhǎng)方形的長(zhǎng)和平行四邊形的底是否相等?
。4)討論:轉(zhuǎn)化成的長(zhǎng)方形的寬和平行四邊形的高是否相等?
3、學(xué)生操作驗(yàn)證
師:這個(gè)剪拼的任務(wù)就交給你們了。
4、交流匯報(bào)
。1)生1:先在平行四邊形上畫(huà)一條高,沿著高剪開(kāi),把平行四邊形分成了一個(gè)三角形,一個(gè)梯形,然后把三角形向右平移,拼成了長(zhǎng)方形。
生2:在平行四邊形上畫(huà)一條高,然后沿高剪開(kāi),分成了兩個(gè)梯形,然后把左邊的梯形向右平移,拼成了長(zhǎng)方形。
師:這樣的變化過(guò)程在數(shù)學(xué)上叫做“轉(zhuǎn)化”,平行四邊形轉(zhuǎn)化成長(zhǎng)方形。
。2)面積沒(méi)變,只是形狀變了。
(3)長(zhǎng)方形的長(zhǎng)和平行四邊形的底相等。
。4)長(zhǎng)方形的寬和平行四邊形的高相等。
。5)平行四邊形的面積怎樣算?
5、集體推導(dǎo)
齊看演示剪拼的過(guò)程,學(xué)生自己口頭作答,再齊讀。(老師邊講解邊板書(shū))
一個(gè)平行四邊形沿著任意一條高剪開(kāi),都可以拼成一個(gè)(長(zhǎng)方形),它的面積與平行四邊形的面積(相等),這個(gè)長(zhǎng)方形的長(zhǎng)與平行四邊形的(底)相等,這個(gè)長(zhǎng)方形的寬與平行四邊形的(高)相等,因?yàn)殚L(zhǎng)方形的面積=(長(zhǎng) X 寬),所以平行四邊形的面積=(底 X 高)。
板書(shū):長(zhǎng)方形的面積 = 長(zhǎng) X 寬
↓ ↓ ↓
平行四邊形的面積 = 底 X 高
6、字母表示公式
師:如果用字母S表示平行四邊形的面積,用a表示平行四邊形的底,用h表示平行四邊形的高,那么平行四邊形的面積計(jì)算公式可以寫(xiě)成S=a×h(師板書(shū))(在課本劃出公式,讀公式)
7、回到學(xué)生們的猜想,平行四邊形的面積是跟底和高有關(guān)系。我們也可以用計(jì)算的方法來(lái)求出平行四邊形的面積了。
師:同學(xué)們多了不起啊,自己實(shí)踐得出了真理,科學(xué)就是這樣一步步的向前推進(jìn)的。
8、運(yùn)用公式:學(xué)習(xí)88頁(yè)例1
師:讓我們回到學(xué)校門前的花壇吧。
出示題目,學(xué)生讀題,學(xué)生口答,老師板書(shū)過(guò)程。
9、回到同學(xué)們的爭(zhēng)論,兩個(gè)花壇的面積是一樣大的,科學(xué)實(shí)踐還是解決爭(zhēng)論的最好辦法。
三、鞏固拓展
1、課本89:第1題。(學(xué)生在練習(xí)本中解答)
2、口答:下面的平行四邊形的面積是多少平方厘米?
3、選擇題:(區(qū)分對(duì)應(yīng)的底和高)
4、實(shí)際應(yīng)用:課本89:第4題第1個(gè)圖(先量出底和高,再計(jì)算) 求樓梯扶手的面積。
5、口答
。1)平行四邊形的底不變,高擴(kuò)大2倍,面積就( )。
。2)平行四邊形的高不變,底縮小2倍,面積就( )。
。3)平行四邊形的底擴(kuò)大2倍,高也擴(kuò)大2倍,面積( )。
四、總結(jié)全課,提高認(rèn)識(shí)
1、通過(guò)今天的學(xué)習(xí),你有那些收獲?還有那些遺憾的地方?
2、今天,我們用轉(zhuǎn)化割補(bǔ)法學(xué)習(xí)了平行四邊形面積計(jì)算,希望同學(xué)們把它運(yùn)用到今后的學(xué)習(xí)生活中去,真正做到學(xué)以致用。
板書(shū)設(shè)計(jì):
平行四邊形的面積
長(zhǎng)方形的面積 = 長(zhǎng)×寬
↓ ↓ ↓
平行四邊形的面積= 底×高
S = a×h
平行四邊形教案 篇6
一、學(xué)習(xí)目標(biāo)
。、經(jīng)歷探索多項(xiàng)式與多項(xiàng)式相乘的運(yùn)算法則的過(guò)程,發(fā)展有條理的思考及語(yǔ)言表達(dá)能力。
2、 會(huì)進(jìn)行簡(jiǎn)單的多項(xiàng)式與多項(xiàng)式的乘法運(yùn)算
二、學(xué)習(xí)過(guò)程
。ㄒ唬┳詫W(xué)導(dǎo)航
1、創(chuàng)設(shè)情境
某地區(qū)在退耕還林期間,將一塊長(zhǎng)m米、寬a米的長(zhǎng)方形林區(qū)的長(zhǎng)、寬分別增加n米和b米,用兩種方法表示這塊林區(qū)現(xiàn)在的面積。
這塊林區(qū)現(xiàn)在的長(zhǎng)為 米,寬為 米。因而面積為_(kāi)_______米2。
還可以把這塊林地分為四小塊,它們的面積分別為 米2, 米2,_______米2, 米2。故這塊地的面積為 。
由于這兩個(gè)算式表示的都是同一塊地的面積,則有 =
如果把(m+n)看作一個(gè)整體,你還能用別的方法得到這個(gè)等式嗎?
2、概括:
多項(xiàng)式乘以多項(xiàng)式的法則:
3、計(jì)算
。1) (2)
4、練一練
。1)
。ǘ┖献鞴リP(guān)
1、某酒店的廚房進(jìn)行改造,在廚房的中間設(shè)計(jì)一個(gè)準(zhǔn)備臺(tái),要求四面的過(guò)道寬都為x米,已知廚房的長(zhǎng)寬分別為8米和5米,用代數(shù)式表示該廚房過(guò)道的總面積。
2、解方程
(三)達(dá)標(biāo)訓(xùn)練
1、填空題:
(1) = =
。2) = 。
2、計(jì)算
。1) (2)
。3) (4)
(四)提升
1、怎樣進(jìn)行多項(xiàng)式與多項(xiàng)式的乘法運(yùn)算?
2、若 的乘積中不含 和 項(xiàng),則a= b=
應(yīng)用題
第三十五講 應(yīng)用題
在本講中將介紹各類應(yīng)用題的解法與技巧.
當(dāng)今數(shù)學(xué)已經(jīng)滲入到整個(gè)社會(huì)的各個(gè)領(lǐng)域,因此,應(yīng)用數(shù)學(xué)去觀察、分析日常生活現(xiàn)象,去解決日常生活問(wèn)題,成為各類數(shù)學(xué)競(jìng)賽的一個(gè)熱點(diǎn).
應(yīng)用性問(wèn)題能引導(dǎo)學(xué)生關(guān)心生活、關(guān)心社會(huì),使學(xué)生充分到數(shù)學(xué)與自然和人類社會(huì)的密切聯(lián)系,增強(qiáng)對(duì)數(shù)學(xué)的理解和應(yīng)用數(shù)學(xué)的信心.
解答應(yīng)用性問(wèn)題,關(guān)鍵是要學(xué)會(huì)運(yùn)用數(shù)學(xué)知識(shí)去觀察、分析、概括所給的實(shí)際問(wèn)題,揭示其數(shù)學(xué)本質(zhì),將其轉(zhuǎn)化為數(shù)學(xué)模型.其求解程序如下:
在初中范圍內(nèi)常見(jiàn)的數(shù)學(xué)模型有:數(shù)式模型、方程模型、不等式模型、函數(shù)模型、平面幾何模型、圖表模型等.
例題求解
一、用數(shù)式模型解決應(yīng)用題
數(shù)與式是最基本的數(shù)學(xué)語(yǔ)言,由于它能夠有效、簡(jiǎn)捷、準(zhǔn)確地揭示數(shù)學(xué)的本質(zhì),富有通用性和啟發(fā)性,因而成為描述和表達(dá)數(shù)學(xué)問(wèn)題的重要方法.
【例1】(20xx年安徽中考題)某風(fēng)景區(qū)對(duì)5個(gè)旅游景點(diǎn)的門票價(jià)格進(jìn)行了調(diào)整,據(jù)統(tǒng)計(jì),調(diào)價(jià)前后各景點(diǎn)的游客人數(shù)基本不變。有關(guān)數(shù)據(jù)如下表所示:
景點(diǎn)ABCDE
原價(jià)(元)1010152025
現(xiàn)價(jià)(元)55152530
平均日人數(shù)(千人)11232
。1)該風(fēng)景區(qū)稱調(diào)整前后這5個(gè)景點(diǎn)門票的平均收費(fèi)不變,平均日總收入持平。問(wèn)風(fēng)景區(qū)是怎樣計(jì)算的?
(2)另一方面,游客認(rèn)為調(diào)整收費(fèi)后風(fēng)景區(qū)的平均日總收入相對(duì)于調(diào)價(jià)前,實(shí)際上增加了約9.4%。問(wèn)游客是 怎樣計(jì)算的?
。3)你認(rèn)為風(fēng)景區(qū)和游客哪一個(gè)的說(shuō)法較能反映整體實(shí)際?
思路點(diǎn)撥 (1)風(fēng)景區(qū)是這樣計(jì)算的:
調(diào)整前的平均價(jià)格: ,設(shè)整后的平均價(jià)格:
∵調(diào)整前后的平均價(jià)格不變,平均日人數(shù)不變.
∴平均日總收入持平.
( 2)游客是這樣計(jì)算的:
原平均日總收入:10×1+10×1+15×2+20×3+25×2=160(千元)
現(xiàn)平均日總收入:5×1+5×1+15×2+25×3+30×2=175(千元)
∴平均日總收入增加了
。3)游客的說(shuō)法較能反映整體實(shí)際.
二、用方程模型解應(yīng)用題
研究和解決生產(chǎn)實(shí)際和現(xiàn)實(shí)生恬中有關(guān)問(wèn)題常常要用到方程<組)的知識(shí),它可以幫助人們從數(shù)量關(guān)系和相等關(guān)系的角度去認(rèn)識(shí)和理解現(xiàn)實(shí)世界.
【例2】 (重慶中考題)某中學(xué)新建了一棟4層的教學(xué)大樓,每層樓有8間教室,進(jìn)出這棟大樓共有4道門,其中兩道正門大小相同,兩道側(cè)門大小也相同.安全檢查中,對(duì)4道門進(jìn)行了測(cè)試:當(dāng)同時(shí)開(kāi)啟一道正門和兩道側(cè)門時(shí),2min內(nèi)可以通過(guò)560名學(xué)生;當(dāng)同時(shí)開(kāi)啟一道正門和一道側(cè)門時(shí),4mln內(nèi)可以通過(guò)800名學(xué)生.
(1)求平均每分鐘一道正門和一道側(cè)門各可以通過(guò)多少名學(xué)生?
(2)檢查中發(fā)現(xiàn),緊急情況時(shí)因?qū)W生擁擠,出門的效率降低20%.安全檢查規(guī)定:在緊急情況下全大樓的學(xué)生應(yīng)在5min內(nèi)通過(guò)這4道門安全撤離.假設(shè)這棟教學(xué)大樓每間教室最多有45名學(xué)生,問(wèn):建造的這4道門整否符合安全規(guī)定?請(qǐng)說(shuō)明理由.
思路點(diǎn)撥 列方程(組)的關(guān)鍵是找到題中等量關(guān)系:兩種測(cè)試中通過(guò)的學(xué)生數(shù)量.設(shè)未知數(shù)時(shí)一般問(wèn)什么設(shè)什么.“符合安全規(guī)定”之義為最大通過(guò)量不小于學(xué)生總數(shù).
(1)設(shè)平均每分鐘一道正門可以通過(guò)x名學(xué)生,一道側(cè)門可以通過(guò)y名學(xué)生,由題意得:
,解得:
(2)這棟樓最多有學(xué)生4×8×4 5=1440(名).
擁擠時(shí)5min4道門能通過(guò).
5×2(120+80)(1-20%)=1600(名),
因1600>1440,故建造的4道門符合安全規(guī)定.
三、用不等式模型解應(yīng)用題
現(xiàn)實(shí)世界中的不等關(guān)系是普遍存在的,許多問(wèn)題有時(shí)并不需要研究它們之間的相等關(guān)系,只需要確定某個(gè)量的變化范圍,即可對(duì)所研究的問(wèn)題有比較清楚的認(rèn)識(shí).
【例3】 (蘇州中考題)我國(guó)東南沿海某地的風(fēng)力資源豐富,一年內(nèi)月平均的風(fēng)速不小于3m/s的時(shí)間共約160天,其中日平均風(fēng)速不小于6m/s的時(shí)間占60天.為了充分利用“風(fēng)能”這種“綠色資源”,該地?cái)M建一個(gè)小型風(fēng)力發(fā)電場(chǎng),決定選用A、B兩種型號(hào)的風(fēng)力發(fā)電機(jī),根據(jù)產(chǎn)品說(shuō)明,這兩種風(fēng)力發(fā)電機(jī)在各種風(fēng)速下的日發(fā)電量(即一天的發(fā)電量)如下表:一天的發(fā)電量)如下表:
日平均風(fēng)速v(米/秒)v<33≤v<6v≥6
日發(fā)電量 (千瓦?時(shí))A型發(fā)電機(jī)O≥36≥150
B型發(fā)電機(jī)O≥24≥90
根據(jù)上面的數(shù)據(jù)回答:
(1)若這個(gè)發(fā)電場(chǎng)購(gòu)x臺(tái)A型風(fēng)力發(fā)電機(jī),則預(yù)計(jì)這些A型風(fēng)力發(fā)電機(jī)一年的發(fā)電總量至少為 千瓦?時(shí);
(2)已知A型風(fēng)力發(fā)電機(jī)每臺(tái)O.3萬(wàn)元,B型風(fēng)力發(fā)電機(jī)每臺(tái)O.2萬(wàn)元.該發(fā)電場(chǎng)擬購(gòu)置風(fēng)力發(fā)電機(jī)共10臺(tái),希望購(gòu)機(jī)的費(fèi)用不超過(guò)2.6萬(wàn)元,而建成的風(fēng)力發(fā)電場(chǎng)每年的發(fā)電總量不少于102000千瓦?時(shí),請(qǐng)你提供符合條件的購(gòu)機(jī)方案.
根據(jù)上面的數(shù)據(jù)回答:
思路點(diǎn)撥 (1) (100×36+60×150)x=12600x;
(2)設(shè)購(gòu)A型發(fā)電機(jī)x臺(tái),則購(gòu)B型發(fā)電機(jī)(10—x)臺(tái),
解法一根據(jù)題意得:
解得5≤x ≤6.
故可購(gòu)A型發(fā)電機(jī)5臺(tái),B型發(fā)電機(jī)5臺(tái);或購(gòu)A型發(fā)電機(jī)6臺(tái),B型發(fā)電視4臺(tái).
四、用函數(shù)知識(shí)解決的應(yīng)用題
函數(shù)類應(yīng)用問(wèn)題主要有以下兩種類型:(1)從實(shí)際問(wèn)題出發(fā),引進(jìn)數(shù)學(xué)符號(hào),建立函數(shù)關(guān)系;(2)由提供的基本模型和初始條件去確定函數(shù)關(guān)系式.
【例4】 (揚(yáng)州)楊嫂在再就業(yè)中心的扶持下,創(chuàng)辦了“潤(rùn)楊”報(bào)刊零售點(diǎn).對(duì)經(jīng)營(yíng)的某種晚報(bào),楊嫂提供丁如下信息:
、儋I進(jìn)每份0.20元,賣出每份0.30元;
②一個(gè)月內(nèi)(以30天計(jì)),有20天每天可以賣出200份,其余10天每天只能賣出120份;
、垡粋(gè)月內(nèi),每天從報(bào)社買進(jìn)的報(bào)紙份數(shù)必須相同.當(dāng)天賣不掉的報(bào)紙,以每份0.10元退回給報(bào)社;
(1)填表:
一個(gè)月內(nèi)每天買進(jìn)該種晚報(bào)的份數(shù)100150
當(dāng)月利潤(rùn)(單位:元)
(2)設(shè)每天從報(bào)社買進(jìn)該種晚報(bào)x份,120≤x≤200時(shí),月利潤(rùn)為y元,試求出y與x的函數(shù)關(guān)系式,并求月利潤(rùn)的最大值.
思路點(diǎn)撥(1)填表:
一個(gè)月內(nèi)每天買進(jìn)該種晚報(bào)的份數(shù)100150
當(dāng)月利潤(rùn)(單位:元)300390
(2)由題意可知,一個(gè)月內(nèi)的20天可獲利潤(rùn):
20×=2x(元);其余10天可獲利潤(rùn):
10=240—x(元);
故y=x+240,(120≤x≤200), 當(dāng)x=200時(shí),月利潤(rùn)y的最大值為440元.
注 根據(jù)題意,正確列出函數(shù)關(guān)系式,是解決問(wèn)題的關(guān)鍵,這里特別要注意自變量x的取值范圍.
另外,初三還會(huì)提及統(tǒng)計(jì)型應(yīng)用題,幾何型應(yīng)用題.
【例5】 (桂林市)某公司需在一月(31天)內(nèi)完成新建辦公樓的裝修工程.如果由甲、乙兩個(gè)工程隊(duì)合做,12天可完成;如果由甲、乙兩隊(duì)單獨(dú)做,甲隊(duì)比乙隊(duì)少用10天完成.
。1)求甲、乙兩工程隊(duì)單獨(dú)完成此項(xiàng)工程所需的天數(shù).
(2)如果請(qǐng)甲工程隊(duì)施工,公司每日需付費(fèi)用200 0元;如果請(qǐng)乙工程隊(duì)施工,公司每日需付費(fèi)用1400元.在規(guī)定時(shí)間內(nèi):A.請(qǐng)甲隊(duì)單獨(dú)完成此項(xiàng)工程;B.請(qǐng)乙隊(duì)單獨(dú)完成此項(xiàng)工 程; C.請(qǐng)甲、乙兩隊(duì)合作完成此項(xiàng)工程.以上方案哪一種花錢最少?
思路點(diǎn)撥 這是一道策略優(yōu)選問(wèn)題.工程問(wèn)題中:工作量=工作效率×工時(shí).
(1)設(shè)乙工程隊(duì)單獨(dú)完成此項(xiàng)工程需x天,根據(jù)題意得:
, x=30合題意,
所以,甲工程隊(duì)單獨(dú)完成此項(xiàng)工程需用20天,乙隊(duì)需30天.
(2)各種方案所需的費(fèi)用分別為:
A.請(qǐng)甲隊(duì)需20xx×20=40000元;
B.請(qǐng)乙隊(duì)需1400×30=4200元;
C.請(qǐng)甲、乙兩隊(duì)合作需(20xx+1400)×12=40800元.
所隊(duì)單獨(dú)請(qǐng)甲隊(duì)完成此項(xiàng)工程花錢最少.
【例6】 (2全國(guó)聯(lián)賽初賽題)一支科學(xué)考察隊(duì)前往某條河流的上游去考察一個(gè)生態(tài)區(qū),他們以每天17km的速度出發(fā),沿河岸向上游行進(jìn)若干天后到達(dá)目的地,然后在生態(tài)區(qū)考察了若干天,完成任務(wù)后以每天25km的速度返回,在出發(fā)后的第60天,考察隊(duì)行進(jìn)了24km后回到出發(fā)點(diǎn),試問(wèn):科學(xué)考察隊(duì)的生態(tài)區(qū)考察了多少天?
思路點(diǎn)撥 挖掘題目中隱藏條件是關(guān)鍵!
設(shè)考察隊(duì)到 生態(tài)區(qū)去用了x天,返回用了y天,考察用了z天,則x+y+z=60,
17x-25y=-1,即25y-17x=1. ①
這里x、y是正整數(shù),現(xiàn)設(shè) 法求出①的'一組合題意的解,然后計(jì)算出z的值.
為此,先求出①的一組特殊解(x0,y0),(這里x0,y0可以是負(fù)整數(shù)).用輾轉(zhuǎn)相除法.
25=l ×17+8,17=2×8+1,故1=17—2×8=17-2×(25—17)=3 ×17-2×25.
與①的左端比較可知,x0 =-3,y0=-2.
下面再求出①的合題意的解.
由不定方程的知識(shí)可知,①的一切整數(shù)解可表示為x=-3+25t,y=-2+17t,
∴ x+y=42t-5,t為整數(shù).按題意0 ∴z=60—(x+y)=23. 答:考察隊(duì)在生態(tài)區(qū)考察的天數(shù)是23天. 注 本題涉及到的未知量多,最終轉(zhuǎn)化為二元一次不定方程來(lái)解,希讀者仔細(xì)咀嚼所用方法. 【例7】 (江蘇省第17屆初中競(jìng)賽題)華鑫超市對(duì)顧客實(shí)行優(yōu)惠購(gòu)物,規(guī)定如下: (1)若一次購(gòu)物少于200元,則不予優(yōu)惠; (2)若一次購(gòu)物滿200元,但不超過(guò)500元,按標(biāo)價(jià)給予九折優(yōu)惠; (3)若一次購(gòu)物超過(guò)500元,其中500元部分給予九折優(yōu)惠,超過(guò)500元部分給予八折 優(yōu)惠. 小明兩次去該超市購(gòu)物,分別付款198元與554元.現(xiàn)在小亮決定一次去購(gòu) 買小明分兩次購(gòu)買的同樣多的物品,他需付款多少? 思路點(diǎn)撥 應(yīng)付198元購(gòu)物款討論: 第一次付款198元,可是所購(gòu)物品的實(shí)價(jià),未 享受優(yōu)惠;也可能是按九折優(yōu)惠后所付的款.故應(yīng)分兩種情況加以討論. 情形1 當(dāng)198元為購(gòu)物不打折付的錢時(shí),所購(gòu)物品的原價(jià)為198元 . 又554=450+104,其中450元為購(gòu)物500元打九折付的錢,104元為購(gòu)物打八折付的錢;104÷0. 8 =130(元). 因此,554元所購(gòu)物品的原價(jià)為130+500=630(元),于是購(gòu)買小呀花198 +630=828(元)所購(gòu)的全部物品,小亮一次性購(gòu)買應(yīng)付500×0.9+(828-500)×0.8=712.4(元). 情形2 當(dāng)198元為購(gòu)物打九折付的錢時(shí),所購(gòu)物品的原價(jià)為198 ÷0.9=220(元) .仿情形1的討論,,購(gòu)220+630=850{元}物品一次性付款應(yīng)為500×0.9+(850-500)×0.8=730(元). 綜上所述,小亮一次去超市購(gòu)買小明已購(gòu)的同樣多的物品,應(yīng)付款712.40元或730元 【例8】 (20xx年全國(guó)數(shù)學(xué)競(jìng)賽題)某項(xiàng)工程,如果由甲、乙兩隊(duì)承包,2 天完成,需180000元;由乙、丙兩隊(duì)承包,3 天完成,需付150000元;由甲、丙兩隊(duì)承包,2 天完成,需付160000元.現(xiàn)在工程由一個(gè)隊(duì)單獨(dú)承包,在保證一周完成的前提下,哪個(gè)隊(duì)承包費(fèi)用最少? 思路點(diǎn)撥 關(guān)鍵問(wèn)題是甲、乙、丙單獨(dú)做各需的天數(shù)及獨(dú)做時(shí)各方日付工資.分兩個(gè)層次考慮: 設(shè)甲、乙、丙單獨(dú)承包各需x、y、z天完成. 則 ,解得 再設(shè)甲、乙、丙單獨(dú)工作一天,各需付u、v、w元, 則 ,解得 于是,由甲隊(duì)單獨(dú)承包,費(fèi)用是45500×4=182000 (元). 由乙隊(duì)單獨(dú)承包,費(fèi)用是29500×6= 177000 (元). 而丙隊(duì)不能在一周內(nèi)完成.所以由乙隊(duì)承包費(fèi)用最少. 學(xué)歷訓(xùn)練 。ˋ級(jí)) 1.(河南)在防治“SARS”的戰(zhàn)役中,為防止疫情擴(kuò)散,某制藥廠接到了生產(chǎn)240箱過(guò)氧乙酸消毒液的任務(wù).在生產(chǎn)了60箱后,需要加快生產(chǎn),每天比原來(lái)多生產(chǎn)15箱,結(jié)果6天就完成了任務(wù).求加快速度后每天生產(chǎn)多少箱消毒液? 2.(山東省競(jìng)賽題)某市為鼓勵(lì)節(jié)約用水,對(duì)自來(lái)水妁收費(fèi)標(biāo)準(zhǔn)作如下規(guī)定:每月每戶用水中不超過(guò)10t部分按0.45元/噸收費(fèi);超過(guò)10t而不超過(guò)20t部分按每噸0.8元收費(fèi);超過(guò)20t部分按每噸1.50元收費(fèi),某月甲戶比乙戶多繳水費(fèi)7.10元,乙戶比丙戶多繳水費(fèi)3.75元,問(wèn)甲、乙、丙該月各繳水費(fèi)多少?(自來(lái)水按整噸收費(fèi)) 3.(江蘇省競(jìng)賽題)甲、乙、丙三人共解出100道數(shù)學(xué)題,每人都解出了其中的60道題,將其中只有1人解出的題叫做難題,3人都解出的題叫做容易題.試問(wèn):難題多還是容易題多?多的比少的多幾道題? 4.某人從A地到B地乘坐出租車有兩種方案,一種出租車收費(fèi)標(biāo)準(zhǔn)是起步價(jià)10元,每千米1.2元;另一種出租車收費(fèi)標(biāo)準(zhǔn)是起步價(jià)8元,每千米1.4元,問(wèn)選擇哪一種出租車比較合適? (提示:根據(jù)目前出租車管理?xiàng)l例,車型不同,起步價(jià)可以不同,但起步價(jià)的最大行駛里程是相同的,且此里程內(nèi)只收起步價(jià)而不管其行駛里程是多少) 。˙級(jí)) 1.(全國(guó)初中數(shù)學(xué)競(jìng)賽題)江堤邊一洼地發(fā)生了管涌,江水不斷地涌出,假定每分鐘涌出的水量相等,如果用兩臺(tái)抽水機(jī)抽水,40min可抽完;如果用4臺(tái)抽水機(jī)抽,16min可抽完.如果要在10min抽完水,那么至少需要抽水機(jī) 臺(tái). 2.(希望杯)有一批影碟機(jī)(VCD)原售價(jià):800元/臺(tái).甲商場(chǎng)用如下辦法促銷: 購(gòu)買臺(tái)數(shù)1~5臺(tái)6~10臺(tái)11~15臺(tái)16~20臺(tái)20臺(tái)以上 每臺(tái)價(jià)格760元720元680元640元600元 乙商場(chǎng)用如下辦法促銷:每次購(gòu)買1~8臺(tái),每臺(tái)打九折;每次購(gòu)買9~16臺(tái),每臺(tái)打八五折; 每次購(gòu)買17~24臺(tái),每臺(tái)打八折;每次購(gòu)買24臺(tái)以上,每臺(tái)打七五折. 。1)請(qǐng)仿照甲商場(chǎng)的促銷列表,列出到乙商場(chǎng)購(gòu)買VCD的購(gòu)買臺(tái)數(shù)與每臺(tái)價(jià)格的對(duì)照表; (2)現(xiàn)在有A、B、C三個(gè)單位,且單位要買10臺(tái)VCD,B單位要買16臺(tái)VCD,C單位要買20臺(tái)VCD,問(wèn)他們到哪家商場(chǎng)購(gòu)買花費(fèi)較少? 3.(河北創(chuàng)新與知識(shí)應(yīng)用競(jìng)賽題)某錢幣收藏愛(ài)好者想把3.50元紙幣兌換成1分、2分、5分的硬幣,他要求硬幣總數(shù)為150枚,且每種硬幣不少于20枚,5分的硬幣要多于2分的硬幣.請(qǐng)你據(jù)此設(shè)計(jì)兌換方案. 4.從自動(dòng)扶梯上走到二樓(扶梯本身也在行駛),如果男孩和女孩都做勻速運(yùn)動(dòng)且男孩每分鐘走動(dòng)的級(jí)數(shù)是女孩的兩倍,已知男孩走了27級(jí)到達(dá)扶梯頂部,而女孩走了18級(jí)到達(dá)扶梯頂部(設(shè)男孩、女孩每次只踏—級(jí)).問(wèn): (1)扶梯露在外面的部分有多少級(jí)? (2)如果扶梯附近有一從二樓到一樓的樓梯,樓梯的級(jí)數(shù)和扶梯的級(jí)數(shù)相等,兩孩子各自到扶梯頂部后按原速度再下樓梯,到樓梯底部再乘扶梯(不考慮扶梯與樓梯間距離)則男孩第一次追上女孩時(shí)走了多少級(jí)臺(tái)階? 5.某化肥廠庫(kù)存三種不同的混合肥,第一種 含磷60%,鉀40%,第二種含鉀10%,氮90%;第三種含鉀50%,磷20%,氮30%,現(xiàn)將三種肥混合成含氮45%的混合肥100?(每種肥都必須取),試問(wèn)在這三種不同混合肥的不同取量中,新混合肥含鉀的取值范圍. 6.(黃岡競(jìng)賽題)有麥田5塊A、B、C、D、E,它們的產(chǎn)量,(單位:噸)、交通狀況和每相鄰兩塊麥田的距離如圖21-2所示,要建一座永久性打麥場(chǎng),這5塊麥田生產(chǎn)的麥子都在此打場(chǎng).問(wèn)建在哪快麥田上(不允許建在除麥田以外的其他地方)才能使總運(yùn)輸量最小?圖中圓圈內(nèi)的數(shù)字為產(chǎn)量,直線段上的字母a、b、d表示距離,且b < a 多邊形的邊角與對(duì)角線 j.Co M 第十四講 多邊形的邊角與對(duì)角線 邊、角、對(duì)角線是多邊形中最基本的概念,求多邊形的邊數(shù) 、內(nèi)外角度數(shù)、對(duì)角線條數(shù)是解與多邊形相關(guān)的基本問(wèn)題,常用到三角形內(nèi)角和、多邊形內(nèi)、外角和定理、不等式、方程等知識(shí). 多邊形 的內(nèi)角和定理反映出一定的規(guī)律性:(n-2)×180°隨n的變化而變化;而多邊形的外角和定理反映出更本質(zhì)的規(guī)律;360°是一個(gè)常數(shù),把內(nèi)角問(wèn)題轉(zhuǎn)化為外角問(wèn)題,以靜制動(dòng)是解多邊形有關(guān)問(wèn)題的常用技巧. 將多邊形問(wèn)題轉(zhuǎn)化為三角形問(wèn)題來(lái)處理是解多邊形問(wèn)題的基本策略,連對(duì)角線或向外補(bǔ)形、對(duì)內(nèi)分割是轉(zhuǎn)化的常用方法,從凸 邊形的一個(gè)頂點(diǎn)引出的對(duì)角線把 凸 邊形分成 個(gè)多角形,凸n邊形一共可引出 對(duì)角線. 例題求解 【例1】在一個(gè)多邊形中,除了兩個(gè)內(nèi)角外,其余內(nèi)角之和為20xx°,則這個(gè)多邊形的邊數(shù)是 . (江蘇省競(jìng)賽題) 思路點(diǎn)撥 設(shè)除去的角為°,y°,多邊形的邊數(shù) 為 ,可建立關(guān)于x、y的不定方程;又0° 鏈接 世界上的萬(wàn)事萬(wàn)物是一個(gè)不斷地聚合和分裂的過(guò)程,點(diǎn)是幾何學(xué)最原始的概念,點(diǎn)生線、線生面、面生體,幾何元素的聚合不斷產(chǎn)生新的圖形,另一方面,不斷地分割已有的圖形可得到新的幾何圖形,發(fā)現(xiàn)新的幾何性質(zhì),多邊形可分成三角形,三角形可以合成其他 一些幾何圖形. 【例2】 在凸10邊形的所有內(nèi)角中,銳角的個(gè)數(shù)最多是( ) A.0 B.1 C.3 D.5 (全國(guó)初中數(shù)學(xué)競(jìng)賽題) 思路點(diǎn)撥 多邊形的內(nèi)角和是隨著多邊形的邊數(shù)變化而變化的,而外角和卻總是不變的,因此,可把內(nèi)角為銳角的個(gè)數(shù)討論轉(zhuǎn)化為 外角為鈍角的個(gè)數(shù)的探討. 【例3】 如圖,已知在△ABC中,AB=AC,AD⊥BC于D,且AD=BC=4,若將此三角形沿AD剪開(kāi)成為兩個(gè)三角形,在平面上把這兩個(gè)三角形拼成一個(gè)四邊形,你能拼出所有的不同形狀的四邊形嗎?畫(huà)出所拼四邊形的示意圖(標(biāo)出圖中直角),并分別寫(xiě)出所拼四邊形的對(duì)角線的長(zhǎng). (烏魯木齊市中考題) 思路點(diǎn)撥 把動(dòng)手操作與合情想象相結(jié)合 ,解題的關(guān)鍵是能注意到重合的邊作為四邊形對(duì)角線有不同情形. 注 教學(xué)建模是當(dāng)今教學(xué)教育、考試改革最熱門的一個(gè)話題,簡(jiǎn)單地說(shuō),“數(shù)學(xué)建!本褪峭ㄟ^(guò)數(shù)學(xué)化(引元、畫(huà)圖等)把實(shí)際問(wèn)題特化為一個(gè)數(shù)學(xué)問(wèn)題,再運(yùn)用相應(yīng)的數(shù)學(xué)知識(shí)方法(模型)解決問(wèn)題. 本例通過(guò)設(shè)元,把“沒(méi)有重疊、沒(méi)有空隙”轉(zhuǎn)譯成等式,通過(guò)不定方程求解. 【例4】 在日常生活中,觀察各種建筑物的地板,就能發(fā)現(xiàn)地板常用各種正多邊形地磚鋪砌成美麗的圖案.也就是說(shuō),使用給定的某些正多邊形,能夠拼成一個(gè)平面圖形,既不留下一絲空白,又不互相重疊(在幾何里叫做平面鑲嵌),這顯然與正多邊形的內(nèi)角大小有關(guān),當(dāng)圍繞一點(diǎn)拼在一起的幾個(gè)多邊形的內(nèi)角加在一起恰好組成一個(gè)周角(360°)時(shí),就拼成了一個(gè)平面圖形. (1)請(qǐng)根據(jù)下列圖形,填寫(xiě)表中空格: (2)如果限于用一種正多邊形鑲嵌,哪幾種正多邊形能鑲嵌成一個(gè)平面圖形? (3)從正三角形、正四邊形,正六邊形中選一種,再在其他正多邊形中選一種,請(qǐng)畫(huà)出用這兩種不同的正多邊形鑲嵌成的一個(gè)平面圖形(草圖);并探索這兩種正多邊形共能鑲嵌成幾種不同的平面 圖形?說(shuō)明你的理由. (陜西省中考題) 思路點(diǎn)撥 本例主要研究?jī)蓚(gè)問(wèn)題:①如果限用一種正多邊形鑲嵌,可選哪些正多邊形;②選用兩種正多邊形鑲嵌,既具有開(kāi)放性,又具有探索性.假定正n邊形滿足鋪砌要求,那么在它的頂點(diǎn)接合的地方,n個(gè)內(nèi)角的和為360°,這樣,將問(wèn)題的討論轉(zhuǎn)化為求不定方程的正整數(shù)解. 【例5】 如圖,五邊形ABCDE的每條邊所在直線沿該邊垂直方向向外平移4個(gè)單位,得到新的五邊形A'B'C'D'E'. 。1)圖中5塊陰影部分即四邊形AHA'G、BFB'P、COC'N、DMD'L、EKE'I能拼成一個(gè)五邊形嗎?說(shuō)明理由. (2)證明五邊形A'B'C'D'E'的周長(zhǎng)比五邊形ABCD正的周長(zhǎng)至少增加25個(gè)單位. (江蘇省競(jìng)賽題) 思路點(diǎn)撥 (1)5塊陰影部分要能拼成一個(gè)五邊形須滿足條件:,A'GB'; B'PC'; C'ND';D'LE';E'IA'三點(diǎn)分別共線;∠1+∠2+∠3+∠4+∠5=360°;(2)增加的周長(zhǎng)等于A'H+A'G+B'F+B'P+C'O+C'N+D'M+D'L+E'K+E'I,用圓的周長(zhǎng)逼近估算. 1.如圖,用硬紙片剪一個(gè)長(zhǎng)為16cm、寬為12cm的長(zhǎng)方形,再沿對(duì)角線把它分成兩個(gè)三角形,用這兩個(gè)三角形可拼出各種三角形和四邊形來(lái),其中周長(zhǎng)最大的是 ?,周長(zhǎng)最小的是 cm. (選6《莢國(guó)中小學(xué)數(shù)學(xué)課程標(biāo)準(zhǔn)》) 2.如圖,∠1+∠2+∠3+∠4+∠5+∠6= . 3.如圖,ABCD是凸四邊形,AB=2,BC=4,CD=7,則線段AD的取值范圍是 . 4.用黑白兩種顏色的正六邊形地面磚按如下所示的規(guī)律,拼成若干個(gè)圖案: (1)第4個(gè)圖案中有白色地面磚 塊; (2)第n個(gè)圖案中有白色地面磚 塊. (江西省中考題) 5.凸n邊形中有且僅有兩個(gè)內(nèi)角為鈍角,則n的最大值是( ) A.4 B.5 C. 6 D.7 ( “希望杯”邀請(qǐng)賽試題) 6.一個(gè)凸多邊 形的每一內(nèi)角都等于140°,那么,從這個(gè)多邊形的一個(gè)頂點(diǎn)出發(fā)的對(duì)角線的條數(shù)是( ) A.9條 B.8條 C.7條 D. 6條 7.有一個(gè)邊長(zhǎng)為4m的正六邊形客廳,用邊長(zhǎng)為50cm的正三角形瓷磚鋪滿,則需要這種瓷磚( ) A.216塊 B.288塊 C.384塊 D.512塊 ( “希望杯”邀請(qǐng)賽試題) 8.已知△ABC是邊長(zhǎng)為2的等邊三角形,△ACD是一個(gè)含有30°角的直角三角形,現(xiàn)將△ABC和△ACD拼成一個(gè)凸四邊形ABCD. (1))畫(huà)出四邊形ABCD; (2)求出四邊形ABCD的對(duì)角線BD的長(zhǎng). (上海市閔行區(qū)中考題) 9.如圖,四邊形ABCD中,AB=BC=CD,∠ABC=90°,∠BCD=150°,求∠BAD的度數(shù). (北京市競(jìng)賽題) 10.如圖,在五邊形A1A2A3A4A5中,Bl是A1的對(duì)邊A3A4的中點(diǎn),連結(jié)A1B1,我們稱A1B1是這個(gè)五邊形的一條中對(duì)線,如果五邊形的每條中對(duì)線都將五邊形的面積分成相等的兩部分,求證:五邊形的每條邊都有一條對(duì)角線和它平行. (安徽省中考題) 11.如圖,凸四邊形有 個(gè);∠A+∠B+∠C+∠D+∠E+∠F+∠G= . (重慶市競(jìng)賽題) 12.如圖,延長(zhǎng)凸五邊形A1A2A3A4A5的各邊相交得到5個(gè)角,∠B1,∠B2,∠B3,∠B4,∠B5,它們的和等于 ;若延長(zhǎng)凸n邊形(n≥5)的各邊相交,則得到的n個(gè)角的和等于 . ( “希望杯”邀請(qǐng)賽試題) 13.設(shè)有一個(gè)邊長(zhǎng)為1的正三角形,記作A1(圖a),將每條邊三等分,在中間的線段上向外作正三角形,去掉中間的線段后所得到的圖形記作A 2(圖b),再將每條邊三等分,并重復(fù)上述過(guò)程,所得到的圖形記作A3(圖c);再將每條邊三 等分,并重復(fù)上述過(guò)程,所得到的圖形記作A4,那么,A4的周長(zhǎng)是 ;A4這個(gè)多邊形的面積是原三角形面積的 倍. (全國(guó)初中數(shù)學(xué)聯(lián)賽題) 14.如圖,六邊形ABCDEF中,∠A=∠B=∠C=∠D=∠E=∠F,且AB+BC=11,F(xiàn)A—CD=3,則BC+DC= . (北京市競(jìng)賽題) 15.在一個(gè)n邊形中,除了一個(gè)內(nèi)角外,其余(n一1)個(gè)內(nèi)角的和為2750°,則這個(gè)內(nèi)角的度數(shù)為( ) A.130° D.140° C .105° D.120° 16.如圖,四邊形ABCD中,∠BAD=90°,AB=BC=2 ,AC=6,AD=3,則CD的長(zhǎng)為( ) A.4 B.4 C.3 D. 3 (江蘇省競(jìng)賽題) 注 按題中的方法'不斷地做下去,就會(huì)成為下圖那樣的圖形,它的邊界有一個(gè)美麗的名稱——雪花曲線或 科克曲線(瑞典數(shù)學(xué)家),這類圖形稱為“分形”,大量的物理、生物與數(shù)學(xué)現(xiàn)象都導(dǎo)致分形,分形是新興學(xué)科“混沌”的重要分支. 17.如圖,設(shè)∠CGE=α,則∠A+∠B+∠C+∠D+∠C+∠F=( ) A.360°一α B.270°一αC.180°+α D.2α (山東省競(jìng)賽題) 18.平面上有A、B,C、D四點(diǎn),其中任何三點(diǎn)都不在一直線上,求證:在△ABC、△ABD、△ACD、△BDC中至少有一個(gè)三角形的內(nèi)角不超過(guò)45°. 19.一塊地能被n塊相同的正方形地磚所覆蓋,如果用較小的相同正方形地磚,那么需n+76塊這樣的地磚才能覆蓋該塊地,已知n及地磚的邊長(zhǎng)都是整數(shù),求n. (上海市競(jìng)賽題) 20.如圖,凸八邊形ABCDEFGH的8 個(gè)內(nèi)角都相等,邊AB、BC、CD、DE、EF、FG的長(zhǎng)分別為7,4,2,5,6,2,求該八邊形的周長(zhǎng). 21.如圖l是一張可折疊的鋼絲床的示意圖,這是展開(kāi)后支撐起來(lái)放在地面上的情況,如果折疊起來(lái),床頭部分被折到了床面之下(這里的A、B、C、D各點(diǎn)都是活動(dòng)的),活動(dòng)床頭是根據(jù)三角形的穩(wěn)定性和四邊形的不穩(wěn)定性設(shè)計(jì)而成的,其折疊過(guò)程可由圖2的變換反映出來(lái). 如果已知四邊形ABCD中,AB=6,CD=15,那么BC、AD取多長(zhǎng)時(shí),才能實(shí)現(xiàn)上述的折疊變化? (淄博市中考題) 22.一個(gè)凸n邊形由若干個(gè)邊長(zhǎng)為1的正方形或正三角形無(wú)重疊、無(wú)間隙地拼成,求此凸n邊形各個(gè)內(nèi)角的大小,并畫(huà)出這樣的 凸n邊形的草圖. 圖形的平移與旋轉(zhuǎn) 前蘇聯(lián)數(shù)學(xué)家亞格龍將幾何學(xué)定義為:幾何學(xué)是研究幾何圖形在運(yùn)動(dòng)中不變的那些性質(zhì)的學(xué)科. 幾何變換是指把一個(gè)幾何圖形Fl變換成另一個(gè)幾何圖形F2的方法,若僅改變圖形的位置,而不改變圖形的形狀和大小,這種變換稱為合同變換,平移、旋轉(zhuǎn)是常見(jiàn)的合同變換. 如圖1,若把平面圖形Fl上的各點(diǎn)按一定方向移動(dòng)一定距離得到圖形F2后,則由的變換叫平移變換. 平移前后的圖形全等,對(duì)應(yīng)線段平行且相等,對(duì)應(yīng)角相等. 如圖2,若把平面圖Fl繞一定點(diǎn)旋轉(zhuǎn)一個(gè)角度得到圖形F2,則由Fl到F2的變換叫旋轉(zhuǎn)變換,其中定點(diǎn)叫旋轉(zhuǎn)中心,定角叫旋轉(zhuǎn)角. 旋轉(zhuǎn)前后的圖形全等,對(duì)應(yīng)線段相等,對(duì)應(yīng)角相等,對(duì)應(yīng)點(diǎn)到旋轉(zhuǎn)中心的距離相等. 通過(guò)平移或旋轉(zhuǎn),把部分圖形搬到新的位置,使問(wèn)題的條件相對(duì)集中,從而使條件與待求結(jié)論之間的關(guān)系明朗化,促使問(wèn)題的解決. 注 合同變換、等積變換、相似變換是基本的幾何變換.等積變換,只是圖形在保持面積不變情況下的形變'而相似變換,只保留線段間的比例關(guān)系,而線段本身的大小要改變. 例題求解 【例1】如圖,P為正方形ABCD內(nèi)一點(diǎn),PA:PB:PC=1:2:3,則∠APD= . 思路點(diǎn)撥 通過(guò)旋轉(zhuǎn),把PA、PB、PC或關(guān)聯(lián)的線段集中到同一個(gè)三角形. 【例2】 如圖,在等腰Rt△ABC的斜邊AB上取兩點(diǎn)M,N,使∠MCN=45°,記AM=m,MN= x,DN=n,則以線 段x、m、n為邊長(zhǎng)的三角形的形狀是( ) A.銳角三角形 B.直角三角形 C.鈍角三角形 D.隨x、m、n的變化而改變 思路點(diǎn)撥 把△ACN繞C點(diǎn)順時(shí)針旋轉(zhuǎn)45°,得△CBD,這樣∠ACM+∠BCN=45°就集中成一個(gè)與∠MCN相等的角,在一條直線上的m、 x、n 集中為△DNB,只需判定△DNB的形狀即可. 注 下列情形,常實(shí)施旋轉(zhuǎn)變換: (1)圖形中出現(xiàn)等邊三角形或正方形,把旋轉(zhuǎn)角分別定為60°、90°; (2)圖形中有線段的中點(diǎn),將圖形繞中點(diǎn)旋轉(zhuǎn)180°,構(gòu)造中心對(duì)稱全等三角形; (3)圖形中出現(xiàn)有公共端點(diǎn)的線段,將含有相等線段的圖形繞公共端點(diǎn),旋轉(zhuǎn)兩相等線段的夾角后與另一相等線段重合. 【例3】 如圖,六邊形ADCDEF中,AN∥DE,BC∥EF,CD∥AF,對(duì)邊之差BC-EF=ED?AB=AF?CD>0,求證:該六邊形的各角相等. (全俄數(shù)學(xué)奧林匹克競(jìng)賽題) 思路點(diǎn)撥 設(shè)法將復(fù)雜的條件BC?FF=ED?AB=AF?CD>0用一個(gè)基本圖形表示,題設(shè)中有平行條件,可考慮實(shí)施平移變換. 注 平移變換常與平行線相關(guān),往往要用到平行四邊形的性質(zhì),平移變換可將角,線段移到適當(dāng)?shù)奈恢茫狗稚⒌臈l件相對(duì)集中,促使問(wèn)題的解決. 【例4】 如圖,在等腰△ABC的兩腰AB、AC上分別取點(diǎn)E和F,使AE=CF.已知BC=2,求證:EF≥1. (西安市競(jìng)賽題) 思路點(diǎn)撥 本例實(shí)際上就是證明2EF≥BC,不便直接證明,通過(guò)平移把BC與EF集中到同一個(gè)三角形中. 注 三角形中的不等關(guān)系,涉及到以下基本知識(shí): (1)兩點(diǎn)間線段最短,垂線段最短; (2)三角形兩邊之和大于第三邊,兩邊之差小于第三邊; (3)同一個(gè)三角形中大邊對(duì)大角(大角對(duì)大邊),三角形的一個(gè)外角大于任何一個(gè)和它不相鄰的內(nèi)角. 【例5】 如圖,等邊△ABC的邊長(zhǎng)為 ,點(diǎn)P是△ABC內(nèi)的一點(diǎn),且PA2+PB2=PC2,若PC=5,求PA、PB的長(zhǎng). (“希望杯”邀請(qǐng)賽試題) 思路點(diǎn)撥 題設(shè)條件滿足勾股關(guān)系PA2+PB2=PC2的三邊PA、PB、PC不構(gòu)成三角形,不能直接應(yīng)用,通過(guò)旋轉(zhuǎn)變換使其集中到一個(gè)三角形中,這是解本例的關(guān) 鍵. 學(xué)歷訓(xùn)練 1.如圖,P是正方形ABCD內(nèi)一點(diǎn),現(xiàn)將△ABP繞點(diǎn)B顧時(shí)針?lè)较蛐D(zhuǎn)能與△CBP′重合,若PB=3,則PP′= . 2.如圖,P是等邊△ABC內(nèi)一點(diǎn),PA=6,PB=8,PC=10,則∠APB . 3.如圖,四邊形ABC D中,AB∥CD,∠D=2∠B,若AD=a,AB=b,則CD的長(zhǎng)為 . 4.如圖,把△ABC沿AB邊平移到△A'B'C'的位置,它們的重疊部分(即圖中陰影部分)的面積是△ABC的面積的一半,若AB= ,則此三角形移動(dòng)的距離AA'是( ) A. B. C.l D. (20xx年荊州市中考題) 5.如圖,已知△ABC中,AB=AC,∠BAC=90°,直角EPF的頂點(diǎn)P是BC中點(diǎn),兩邊PE、PF分別交AB、AC于點(diǎn)C、F,給出以下四個(gè)結(jié)論:①AE=CF;②△EPF是等腰直角三角形;③S四邊形AEPF= S△ABC;④EF=AP. 當(dāng)∠EPF在△ABC內(nèi)繞頂點(diǎn)P旋轉(zhuǎn)時(shí)(點(diǎn)E不與A、B重合),上述結(jié)論中始終正確的有( ) A.1個(gè) B.2個(gè) C .3個(gè) D.4個(gè) (20xx年江蘇省蘇州市中考題) 6.如圖,在四邊形 ABCD中,AB=BC,∠ABC=∠CDA=90°,BE⊥AD于E, S四邊形ABCD d=8,則BE的長(zhǎng)為( ) A.2 B.3 C . D. (20xx年武漢市選拔賽試題) 7.如圖,正方形ABCD和正方形EFGH的邊長(zhǎng)分別為 和 ,對(duì)角線BD、FH都在直線 上,O1、O2分別為正方形的中心,線段O1O2的長(zhǎng)叫做兩個(gè)正方形的中心距,當(dāng)中心O2在直線 上平移時(shí),正方形EFGH也隨之平移,在平移時(shí)正方形EFGH的形狀、大小沒(méi)有變化. (1)計(jì)算:O1D= ,O2F= ; (2)當(dāng)中心O2在直線 上平移到兩個(gè)正方形只有一個(gè)公共點(diǎn)時(shí),中心距O1O2= ; (3)隨著中心O2在直線 上平移,兩個(gè)正方形的公共點(diǎn)的個(gè)數(shù)還有哪些變化?并求出相對(duì)應(yīng)的中心距的值或取值范圍(不必寫(xiě)出計(jì)算過(guò)程). (徐州市中考題) 8.圖形的操做過(guò)程(本題中四個(gè)矩形的水平方向的邊長(zhǎng)均為a,豎直 方向的邊長(zhǎng)均為b): 在圖a中,將線段A1A2向右平移1個(gè)單位到B1B2,得到封閉圖形A1A2B1B2(即陰影部分); 在圖b中, 將折線A1A2A3向右平移1個(gè)單位到B1B2B3,得到封閉圖形A1A2A3B1B2B3(即陰影部分); 。1)在圖c中,請(qǐng)你類似地畫(huà)一條有兩個(gè)折點(diǎn)的折線,同樣向右平移1個(gè)單位,從而得到一個(gè)封閉圖形,并用斜線畫(huà)出陰影; 。2)請(qǐng)你分別寫(xiě)出上述三個(gè)圖形中除去陰影部分后剩余部分的面積:S1= ,,S2= ,S3= ; (3)聯(lián)想與探索: 如圖d,在一塊矩形草地上,有一條彎曲的柏油小路(小路任何地方的水平寬度都是1個(gè)單位),請(qǐng)你猜想空白部分表示的草地面積是多少?并說(shuō)明你的猜想是正確的. (20xx年河北省中考題) 9.如圖,已知點(diǎn)C為線段AB上一點(diǎn),△ACM、△CBN是等邊三角形,求證:AN=BM. 說(shuō)明及要求:本題是《幾何》第二冊(cè)幾15中第13題,現(xiàn)要求: (1)將△ACM繞C點(diǎn)按逆時(shí)針?lè)较蛐D(zhuǎn)180°,使A點(diǎn)落在CB上,請(qǐng)對(duì)照原題圖在圖中畫(huà)出符合要求的圖形(不寫(xiě)作法,保留作圖痕跡). (2)在①所得的圖形中,結(jié)論“AN=BM”是否還成立?若成立,請(qǐng)證明;若不成立,請(qǐng)說(shuō)明理由. (3)在①得到的圖形中,設(shè)MA的延長(zhǎng)線與BN相交于D點(diǎn),請(qǐng)你判斷△ABD與四邊形MDNC的形狀,并證明你的結(jié)論. 10.如圖,在Rt△ABC中,∠A=90°,AB=3cm,AC=4cm,以斜邊BC上距離B點(diǎn)3cm的點(diǎn)P為中心,把這個(gè)三角形按逆時(shí)針?lè)较蛐D(zhuǎn)90°至△DEF,則旋轉(zhuǎn)前后兩個(gè)直角三角形重疊部分的面積是 cm2. 11.如圖,在梯形ABCD中,AD∥BC,∠D=90°,BC=CD=12,∠ABE=45°,點(diǎn)E在DC上,AE、BC的延長(zhǎng)線交于點(diǎn)F,若AE=10,則S△ADE+S△CEF的值是 . (紹興市中考題) 12.如圖,在△ABC中,∠BAC=120°,P是△ABC內(nèi)一點(diǎn),則PA+PB+PC與AB+AC的大小關(guān)系是( ) A.PA+PB+PC>AB+AC B.PA+PB+PCC. PA+PB+PC=AB+AC D.無(wú)法確定 13.如圖,設(shè)P到等邊三角形ABC兩頂點(diǎn)A、B的距離分別為2、3,則PC所能達(dá)到的最大值為( ) A. B. C .5 D.6 (20xx年武漢市選拔賽試題) 14.如圖,已知△ABC中,AB=AC,D為AB上一點(diǎn),E為AC 延長(zhǎng)線上一點(diǎn),BD=CE,連DE,求證:DE>DC. 15.如圖,P為等邊△ABC內(nèi)一點(diǎn),PA、PB、PC的長(zhǎng)為正整數(shù),且PA2+PB2=PC2,設(shè)PA=m,n為大于5的實(shí)數(shù),滿 ,求△ABC的面積. 16.如圖,五羊大學(xué)建立分校,校本部與分校隔著兩條平行的小河, ∥ 表示小河甲, ∥ 表示小河乙,A為校本部大門,B為分校大門,為方便人員來(lái)往,要在兩條小河上各建一座橋,橋面垂直于河岸.圖中的尺寸是:甲河寬8米,乙河寬10米,A到甲河垂直距離為40米,B到乙河垂直距離為20米,兩河距離100米,A、B兩點(diǎn)水平距離(與小河平行方向)120米,為使A、B兩點(diǎn)間來(lái)往路程最短,兩座橋都按這個(gè)目標(biāo)而建,那么,此時(shí)A、D兩點(diǎn)間來(lái)往的路程是多少米? (“五羊杯”競(jìng)賽題) 17.如圖,△ABC是等腰直角三角形,∠C=90°,O是△ABC內(nèi)一點(diǎn),點(diǎn)O到△ABC各邊的距離都等于1,將△ABC繞 點(diǎn)O順時(shí)針旋轉(zhuǎn)45°,得△A1BlC1 ,兩三角形公共部分為多邊形KLMNPQ. (1)證明:△AKL、△BMN、△CPQ都是等腰直角三角形; (2)求△ABC與△A1BlC1公共部分的面積. (山東省競(jìng)賽題) 18.(1)操作與證明:如圖1,O是邊長(zhǎng)為a的正方形ACBD的中心,將一塊半徑足夠長(zhǎng),圓心角為直角的扇形紙板的圓心放在O點(diǎn)處,并將紙板繞O點(diǎn)旋轉(zhuǎn),求證:正方形ABCD的邊被紙板覆蓋部分的總長(zhǎng)度為定值. (2)嘗試與思考:如圖2,將一塊半徑足夠長(zhǎng)的扇形紙板的圓心放在邊長(zhǎng)為a的正三角形或正五邊形的中心O點(diǎn)處,并將紙板繞O點(diǎn)旋轉(zhuǎn), 當(dāng)扇形紙板的圓心角為 時(shí),正三角形的邊被紙板覆蓋部分的總長(zhǎng)度為定值a;當(dāng)扇形紙板的圓心角為 時(shí),正五邊形的邊被紙板覆蓋部分的總長(zhǎng)度也為定值a. (3)探究與引申:一般地,將一塊半徑足夠長(zhǎng)的扇形紙板的圓心放在邊長(zhǎng)為a的正n邊形的中心O點(diǎn)處,并將紙板繞O點(diǎn)旋轉(zhuǎn).當(dāng)扇形紙板的圓心角為 時(shí),正n邊形的邊被紙板覆蓋部分 的總長(zhǎng)度為定值a;這時(shí)正n邊形被紙板覆蓋部分的面積是否也為定值?若為定值,寫(xiě)出它與正n邊形面積S之間的關(guān)系;若不是定值,請(qǐng)說(shuō)明理由. 教學(xué)目標(biāo): 結(jié)合生活情境和實(shí)際操作,直觀地認(rèn)識(shí)平行四邊形。 教學(xué)設(shè)計(jì): (一)創(chuàng)設(shè)活動(dòng)情境 師:同學(xué)們,你們喜歡變魔術(shù)嗎? (生自由回答。) 師:現(xiàn)在老師要變魔術(shù)給你們看一看。 (教師拿出一個(gè)長(zhǎng)方形教具,拉動(dòng)長(zhǎng)方形框架對(duì)角使其變?yōu)榱硪粋(gè)圖形。向不同的方向拉,這樣反復(fù)做幾次。) 師:你們想不想試一試? (學(xué)生躍躍欲試。) (二)探索新知 1.做一做 (1)師:同學(xué)們,你們可以親自動(dòng)手做一做。你在拉動(dòng)時(shí)注意觀察拉動(dòng)后的長(zhǎng)方形發(fā)生了哪些變化?這個(gè)新圖形又是什么樣的?并把自己的想法與同伴說(shuō)一說(shuō)。 (以小組為單位開(kāi)始活動(dòng),教師在小組內(nèi)隨時(shí)指導(dǎo)。) (通過(guò)動(dòng)手操作,學(xué)生不難發(fā)現(xiàn)長(zhǎng)方形拉動(dòng)后角不再是直角了或是角的大小變了,但邊的長(zhǎng)短沒(méi)有變。) (2)以小組匯報(bào)方式在全班反饋:新圖形與長(zhǎng)方形的聯(lián)系與區(qū)別,描述新圖形的形狀。 (學(xué)生語(yǔ)言表達(dá)不一定清楚,但只要意思對(duì),教師這時(shí)都要給予鼓勵(lì)。) (3)你們知道長(zhǎng)方形變化后得到的是什么圖形嗎? (學(xué)生回答。這時(shí)有的學(xué)生能結(jié)合自己的生活經(jīng)驗(yàn)說(shuō)出這是平行四邊形,如說(shuō)不出教師可以直接揭示。) (設(shè)計(jì)意圖通過(guò)動(dòng)手操作,讓學(xué)生根據(jù)自己的活動(dòng)體驗(yàn)、小組交流自主發(fā)現(xiàn)平行四邊形與長(zhǎng)方形的聯(lián)系與區(qū)別。) 2.說(shuō)一說(shuō) (1)師:這樣的`圖形你們?cè)谏钪幸?jiàn)過(guò)嗎?在哪兒? (給學(xué)生思考時(shí)間,引導(dǎo)學(xué)生在小組內(nèi)說(shuō)一說(shuō)。) (設(shè)計(jì)意圖讓學(xué)生先獨(dú)立思考是為了有較完整的思維,小組交流是讓每個(gè)學(xué)生都能參與進(jìn)來(lái)。) (2)小組形式匯報(bào)反饋。 當(dāng)學(xué)生語(yǔ)言表達(dá)不清時(shí),要在尊重學(xué)生的基礎(chǔ)上,鼓勵(lì)他把話說(shuō)完整。 (3)課件演示生活中見(jiàn)到的平行四邊形。 (設(shè)計(jì)意圖通過(guò)真實(shí)的生活情境進(jìn)一步認(rèn)識(shí)平行四邊形,讓學(xué)生感到平行四邊形離我們并不遠(yuǎn)。) 3.畫(huà)一畫(huà) (1)師:你們想把剛才在生活中找到的這些平行四邊形在點(diǎn)子圖中畫(huà)出來(lái)嗎? (2)出示附頁(yè)3中的點(diǎn)子圖。學(xué)生動(dòng)手畫(huà)一畫(huà)。 (對(duì)有困難的學(xué)生,教師要隨機(jī)指導(dǎo)。) (3)展示作品,引導(dǎo)學(xué)生參與評(píng)價(jià)。 (設(shè)計(jì)意圖尊重學(xué)生的個(gè)性發(fā)展,在評(píng)價(jià)中自我反思。) 4.拼一拼 (以游戲的方式進(jìn)行。) (1)師:現(xiàn)在我們來(lái)做拼圖游戲,用你們手中的七巧板來(lái)拼一拼今天我們認(rèn)識(shí)的平行四邊形。 (2)生進(jìn)行拼圖游戲,教師巡視指導(dǎo)。 (鼓勵(lì)學(xué)生用多種組合拼出平行四邊形。學(xué)生拼圖過(guò)程中可以與同伴隨意交流。) (設(shè)計(jì)意圖學(xué)生經(jīng)過(guò)以上的數(shù)學(xué)活動(dòng),可能已經(jīng)疲勞了,根據(jù)兒童的心理特點(diǎn),此活動(dòng)以游戲的方式進(jìn)行,讓學(xué)生在輕松、愉快的氣氛中拼一拼,進(jìn)一步直觀認(rèn)識(shí)平行四邊形。) (三)小結(jié)本節(jié)課內(nèi)容,布置實(shí)踐作業(yè) 這節(jié)課我們認(rèn)識(shí)了一個(gè)新圖形――平行四邊形,并知道在我們的生活中可以找到它。請(qǐng)你們對(duì)生活中物體再進(jìn)行觀察,去找一找我們今天認(rèn)識(shí)的這個(gè)新圖形。 【教學(xué)目標(biāo)】 1、知識(shí)與技能: 探索與應(yīng)用平行四邊形的對(duì)角線互相平分的性質(zhì),理解平行線間的距離處處相等的結(jié)論,學(xué)會(huì)簡(jiǎn)單推理。 2、過(guò)程與方法: 經(jīng)歷探索平行四邊形性質(zhì)的過(guò)程,進(jìn)一步發(fā)展學(xué)生的邏輯推理能力及有條理的表達(dá)能力。 3、情感態(tài)度與價(jià)值觀: 在探索平行四邊形性質(zhì)的過(guò)程中,感受幾何圖形中呈現(xiàn)的數(shù)學(xué)美。讓學(xué)生學(xué)會(huì)在獨(dú)立思考的基礎(chǔ)上積極參與對(duì)數(shù)學(xué)問(wèn)題的討論,享受運(yùn)用知識(shí)解決問(wèn)題的成功體驗(yàn),增強(qiáng)學(xué)好數(shù)學(xué)的自信心。 【教學(xué)重點(diǎn)】: 探索并掌握平行四邊形的對(duì)角線互相平分和平行線間的距離處處相等的性質(zhì)。 【教學(xué)難點(diǎn)】: 發(fā)展合情推理及邏輯推理能力 【教學(xué)方法】: 啟發(fā)誘導(dǎo)法,探索分析法 【教具準(zhǔn)備】:多媒體課件 【教學(xué)過(guò)程設(shè)計(jì)】 第一環(huán)節(jié)回顧思考,引入新課 什么叫平行四邊形? 平行四邊形都有哪些性質(zhì)? 利用平行四邊形的性質(zhì),我們可以解決相關(guān)的計(jì)算問(wèn)題。阿凡提是傳說(shuō)中很聰明的人。一天,財(cái)主巴依遇到阿凡提,想考一考聰明的阿凡提,說(shuō):給你兩塊地,一塊是平行四邊形形狀的(如下圖,AB=10,OA=3,BC=8),還有一塊是邊長(zhǎng)是7的正方形EFGH土地,讓你來(lái)選一下,哪一塊面積更大? [學(xué)生活動(dòng)]此時(shí),學(xué)生的積極性被調(diào)動(dòng)起來(lái),努力試圖尋找各種途徑來(lái)求平行四邊形的面積,但找不到合適的解決辦法. [教學(xué)內(nèi)容]教師乘機(jī)引出課題,明確學(xué)習(xí)任務(wù). 第二環(huán)節(jié)探索發(fā)現(xiàn),應(yīng)用深化 1、做一做:(電腦顯示P100“做一做”的內(nèi)容) 如圖4-2,□ABCD的兩條對(duì)角線AC,BD相交于點(diǎn)O, (1)圖中有哪些三角形是全等的?有哪些線段是相等的? (2)能設(shè)法驗(yàn)證你的猜想嗎? [教師活動(dòng)]教師將前后四名同學(xué)分成一組,學(xué)生拿出事先準(zhǔn)備好的平行四邊形及實(shí)驗(yàn)工具(刻度尺、剪刀、圖釘),嘗試在交流合作中動(dòng)手探究平行四邊形的對(duì)角線有何性質(zhì). 2、觀察、討論:(小組交流) 通過(guò)以上活動(dòng),你能得到哪些結(jié)論?并由各小組派學(xué)生表述看法。 [教師活動(dòng)]探究結(jié)束后,分組展示結(jié)果,教師利用課件展示“旋轉(zhuǎn)法”的實(shí)驗(yàn)過(guò)程,增強(qiáng)教學(xué)的直觀性. 結(jié)論:平行四邊形的對(duì)角線互相平分。 [教師活動(dòng)]“實(shí)驗(yàn)都是有誤差的,我們能否對(duì)此進(jìn)行理論證明?” [學(xué)生活動(dòng)]此問(wèn)題難度不大. [教師活動(dòng)]教師讓學(xué)生口述證明過(guò)程.最后師生共同歸納出“平行四邊形的對(duì)角線互相平分”這條性質(zhì). 活動(dòng)二 剛才財(cái)主巴依提出的問(wèn)題你能解決嗎? 學(xué)生口述過(guò)程,教師最后給出規(guī)范的解題過(guò)程。 練一練: 財(cái)主不服氣,又想考阿凡提,說(shuō)過(guò)點(diǎn)O做一直線EF,交邊AD于點(diǎn)E,交BC于點(diǎn)F.直線EF繞點(diǎn)O旋轉(zhuǎn)的過(guò)程中(點(diǎn)E與A、D不重合),你能知道這里有多少對(duì)全等三角形嗎? [教師活動(dòng)]此處組織學(xué)生搶答,互相補(bǔ)充完善后,學(xué)生答出了全部的全等三角形. 活動(dòng)三 電腦顯示P101關(guān)于鐵軌的圖片 提出問(wèn)題:“想一想” 已知,直線a//b,過(guò)直線a上任兩點(diǎn)A,B分別向直線b作垂線,交直線b于點(diǎn)C,點(diǎn)D,如圖, (1)線段AC,BD所在直線有什么樣的位置關(guān)系? (2)比較線段AC,BD的長(zhǎng)。 引出平行線間距離的概念,并引導(dǎo)學(xué)生對(duì)比點(diǎn)到直線的距離,兩點(diǎn)間距離等概念。 (讓學(xué)生進(jìn)一步感知生活中處處有數(shù)學(xué)) A.(學(xué)生思考、交流) B.(師生歸納) 解(1)由AC⊥b,BD⊥b,得AC//BD。 (2)a//b,AC//BD,→四邊形ACDB是平行四邊形 →AC=BD 歸納: 若兩條直線平行,則其中一條直線上任意兩點(diǎn)到另一條直線的距離相等,這個(gè)距離稱為平行線間的距離。 即平行線間的`距離相等。 [議一議]: 舉你能舉出反映“平行線之間的垂直段處處相等實(shí)例嗎”? 活動(dòng)目的: 通過(guò)生活中的實(shí)例的應(yīng)用,深化對(duì)知識(shí)的理解。 第三環(huán)節(jié)鞏固反饋,總結(jié)提高 1、說(shuō)一說(shuō)下列說(shuō)法正確嗎 、倨叫兴倪呅问禽S對(duì)稱圖形() 、谄叫兴倪呅蔚倪呄嗟() ③平行線間的線段相等() 、芷叫兴倪呅蔚膶(duì)角線互相平分() 2、已知,平行四邊形ABCD的周長(zhǎng)是28,對(duì)角線AC,BD相交于點(diǎn)O,且△OBC的周長(zhǎng)比△OBA的周長(zhǎng)大4,則AB= 3、已知P為平行四邊形ABCD的邊CD上的任意點(diǎn),則△APB與平行四邊形ABCD的面積比為 4、平行四邊形ABCD中,AC,DB交于點(diǎn)O,AC=10。DB=12,則AB的取值范圍是什么? 5、平行四邊形ABCD的兩條對(duì)角線相交于O,OA,OB,AB的長(zhǎng)度分別為3cm、4cm、5cm,求其它各邊以及兩條對(duì)角線的長(zhǎng)度。 第四環(huán)節(jié)評(píng)價(jià)反思,目標(biāo)回顧 活動(dòng)內(nèi)容: 本節(jié)課你有哪些收獲?你能將平行四邊形的性質(zhì)進(jìn)行歸納嗎? [布置作業(yè)]: P102習(xí)題4.21,2,3 探究題已知如下圖,在ABCD中,AC與BD相交于點(diǎn)O,點(diǎn)E,F(xiàn)在AC上,且BE∥DF.求證:BE=DF 教學(xué)內(nèi)容: 義務(wù)教育課程標(biāo)準(zhǔn)實(shí)驗(yàn)教科書(shū)數(shù)學(xué)人教版五年級(jí)上冊(cè)第五單元《平行四邊形的面積》第一課時(shí)79~81頁(yè)。 教學(xué)目標(biāo): 1、使學(xué)生通過(guò)探索理解和掌握平行四邊形的面積公式,會(huì)計(jì)算平行四邊形的面積。 2、通過(guò)操作,觀察、比較活動(dòng),初步認(rèn)識(shí)轉(zhuǎn)化的方法,培養(yǎng)學(xué)生的觀察、分析、概括、推導(dǎo)能力,發(fā)展學(xué)生的空間思維。 3、培養(yǎng)學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣及積極參與、團(tuán)結(jié)合作的,滲透品德教育。 教學(xué)重點(diǎn):探究平行四邊形的面積計(jì)算公式,會(huì)計(jì)算平行四邊形的面積。 教學(xué)難點(diǎn):平行四邊形面積公式的推導(dǎo)過(guò)程。 教具準(zhǔn)備:多媒體課件、剪刀、平行四邊形 教學(xué)過(guò)程: 一、情景引入,激趣導(dǎo)課 建國(guó)60年來(lái),我們的生活水平越來(lái)越好,李明家和張海家不單在普羅旺斯小區(qū)買了新房子,還買了私家車,他們不僅是物質(zhì)生活水平提高了,文明也提高了。這不他們又在為兩個(gè)停車位而互相禮讓著,都想把面積大的讓給對(duì)方。你有什么辦法知道這兩個(gè)停車位的面積哪個(gè)大嗎? 導(dǎo)入新課,揭示圖形板書(shū)課題。 二、動(dòng)手操作,探究新知 1、復(fù)習(xí):復(fù)習(xí)平行四邊形的底和高。 2、歸納意見(jiàn),提出驗(yàn)證 學(xué)生利用課前準(zhǔn)備好的平行四邊形,通過(guò)剪、畫(huà)、拼、折等,先自己思考,再和小組同學(xué)交流合作,動(dòng)手操作尋找平行四邊形面積的計(jì)算方法。 3、學(xué)生匯報(bào)結(jié)果,展示操作過(guò)程 小組的代表來(lái)展示各組的操作方法。 4、演示過(guò)程,強(qiáng)化結(jié)果 多媒體演示,再來(lái)回顧一遍剪拼的過(guò)程。并適時(shí)提問(wèn):在轉(zhuǎn)化的過(guò)程中,什么發(fā)生了變化?而什么沒(méi)有變? 5、填空、歸納公式 根據(jù)剛才的操作過(guò)程,完成填空題,并歸納板書(shū)公式。 把一個(gè)平行四邊形轉(zhuǎn)化成長(zhǎng)方形,這個(gè)長(zhǎng)方形的長(zhǎng)相當(dāng)于平行四邊形的(),長(zhǎng)方形的寬相當(dāng)于平行四邊形的(),長(zhǎng)方形的面積和平行四邊形的`面積(),因?yàn)殚L(zhǎng)方形的面積=(),所以平行四邊形的面積=()。 6、提問(wèn)質(zhì)疑 學(xué)生閱讀課本81頁(yè)的內(nèi)容,質(zhì)疑。 三、分層練習(xí),內(nèi)化新知 1、用公式分別算一算兩個(gè)停車位的面積。 2、計(jì)算相對(duì)應(yīng)的底和高的平行四邊形花圃面積。 3、計(jì)算平行四邊形牌兩面涂漆的面積。 4、小小設(shè)計(jì)師:在小區(qū)南面有一塊空地,想在空地里設(shè)計(jì)一個(gè)面積為36平方米的草坪,你有幾種設(shè)計(jì)?請(qǐng)你畫(huà)出圖形,并標(biāo)出有關(guān)數(shù)據(jù)。 四:課堂。 今天我們學(xué)習(xí)了什么?通過(guò)學(xué)習(xí),你有那些新的收獲呢? 板書(shū)設(shè)計(jì): 平行四邊形的面積 長(zhǎng)方形的面積=長(zhǎng)×寬 (轉(zhuǎn)化) 平行四邊形的面積=底×高 S=a×h 教學(xué)目標(biāo) 1.在觀察、操作、推理、歸納等探索過(guò)程中,發(fā)展學(xué)生合情推理的能力,進(jìn)一步培養(yǎng)學(xué)生數(shù)學(xué)說(shuō)理的習(xí)慣與能力。 2.在理解平行四邊形的簡(jiǎn)單識(shí)別方法的活動(dòng)中,讓學(xué)生獲得成功的喜悅,體驗(yàn)到數(shù)學(xué)活動(dòng)充滿著探索和創(chuàng)造,感受到數(shù)學(xué)推理的嚴(yán)謹(jǐn)性。 3.培養(yǎng)學(xué)生獨(dú)立思考的習(xí)慣。 教學(xué)重點(diǎn)與難點(diǎn) 重點(diǎn):探索平行四邊形的識(shí)別方法。 難點(diǎn):理解平行四邊形的識(shí)別方法與應(yīng)用。 教學(xué)準(zhǔn)備 方格紙、直尺、圖釘、剪刀。 教學(xué)過(guò)程 一、提問(wèn)。 1.平行四邊形對(duì)邊( ),對(duì)角( ),對(duì)角線( )。 2.( )是平行四邊形。 二、探索,概括。 1.探索。 (1)按照下面的步驟,在力格紙上畫(huà)一個(gè)有一組對(duì)邊平行且相等的四邊形。 步驟1:畫(huà)一線段AB。 步驟2:平移線段AD到BC。 步驟3:連結(jié)AB、DC,得到四邊形ABCD,其中AD∥BC,AD=BC。 (2)如圖,沿四邊形的邊剪下四邊形,再在一張紙上沿四邊形的邊畫(huà)出一個(gè)四邊形。把兩個(gè)四邊形重合放在一起,重合的點(diǎn)分別記為A、B、C、D。通過(guò)連結(jié)對(duì)角線確定對(duì)角線的交點(diǎn)O,用一枚圖釘穿過(guò)點(diǎn)O,把其中一個(gè)四邊形繞點(diǎn)O旋轉(zhuǎn),觀察旋轉(zhuǎn)180后的四邊形與原來(lái)的四邊形是否重合,重復(fù)旋轉(zhuǎn)幾次,看看是否得到同樣的結(jié)果。 根據(jù)上述的過(guò)程,能否斷定這個(gè)四邊形是平行四邊形? 2.概括。 我們可以看到旋轉(zhuǎn)后的四邊形與原來(lái)的四邊形重合,即C點(diǎn)與A點(diǎn)重合,B點(diǎn)與D點(diǎn)重合。這樣,我們就可以得到_BAC=ACD,從而AB∥DC,又AD∥BC,根據(jù)平行四邊形的'定義,可知道四邊形ABCD是平行四邊形。由此可以得到: 一組對(duì)邊平行且相等的四邊形是平行四邊形。 (一步一步的引導(dǎo)學(xué)生得出結(jié)論,然后讓學(xué)生用自己的語(yǔ)言敘述。) 三、應(yīng)用舉例。 例4 如圖,在平行四邊形ABCD中,已知點(diǎn)E和點(diǎn)F分別在AD和BC上,且AE =CF,連結(jié)CE和AF,試說(shuō)明四邊形AFCE是平行四邊形。 四、鞏固練習(xí)。 如圖,在平行四邊形ABCD中,已知M和N分別是AB、CD上的中點(diǎn),試說(shuō)明四邊形BMDN也是平行四邊形。 五、拓展延伸。 在下面的格點(diǎn)圖中,以格點(diǎn)為頂點(diǎn),你能畫(huà)出多少個(gè)平行四邊形? 六、看誰(shuí)做的既快又正確? 七、課堂小結(jié)。 這節(jié)課你有什么收獲?學(xué)到了什么?還有什么疑問(wèn)嗎? 八、布置作業(yè)。 補(bǔ)充習(xí)題 【平行四邊形教案】相關(guān)文章: 平行四邊形的面積教案07-24 平行四邊形教案優(yōu)秀01-22 《平行四邊形的面積》教案01-02 認(rèn)識(shí)平行四邊形教案03-05 平行四邊形的認(rèn)識(shí)教案07-30 平行四邊形面積教案03-09 平行四邊形教案4篇09-26 精選平行四邊形教案3篇10-09 平行四邊形教案五篇05-24平行四邊形教案 篇7
平行四邊形教案 篇8
平行四邊形教案 篇9
平行四邊形教案 篇10