- 相關(guān)推薦
初三函數(shù)知識點(diǎn)總結(jié)
溫故而知新,可以為師矣。學(xué)習(xí)是永無止境的,只有通過不斷復(fù)習(xí)才能鞏固知識點(diǎn)。下面是小編帶來的是初三函數(shù)知識點(diǎn)總結(jié),希望對您有幫助。
1二次函數(shù)及其圖像
二次函數(shù)(quadraticfunction)是指未知數(shù)的最高次數(shù)為二次的多項(xiàng)式函數(shù)。二次函數(shù)可以表示為f(x)=ax^2bxc(a不為0)。其圖像是一條主軸平行于y軸的拋物線。
一般的,自變量x和因變量y之間存在如下關(guān)系:
一般式
y=ax∧2;bxc(a≠0,a、b、c為常數(shù)),頂點(diǎn)坐標(biāo)為(-b/2a,-(4ac-b∧2)/4a);
頂點(diǎn)式
y=a(xm)∧2k(a≠0,a、m、k為常數(shù))或y=a(x-h)∧2k(a≠0,a、h、k為常數(shù)),頂點(diǎn)坐標(biāo)為(-m,k)對稱軸為x=-m,頂點(diǎn)的位置特征和圖像的開口方向與函數(shù)y=ax∧2的圖像相同,有時題目會指出讓你用配方法把一般式化成頂點(diǎn)式;
交點(diǎn)式
y=a(x-x1)(x-x2)[僅限于與x軸有交點(diǎn)A(x1,0)和B(x2,0)的拋物線];
重要概念:a,b,c為常數(shù),a≠0,且a決定函數(shù)的開口方向,a>0時,開口方向向上,a<0時,開口方向向下。a的絕對值還可以決定開口大小,a的絕對值越大開口就越小,a的絕對值越小開口就越大。
牛頓插值公式(已知三點(diǎn)求函數(shù)解析式)
y=(y3(x-x1)(x-x2))/((x3-x1)(x3-x2)(y2(x-x1)(x-x3))/((x2-x1)(x2-x3)(y1(x-x2)(x-x3))/((x1-x2)(x1-x3)。由此可引導(dǎo)出交點(diǎn)式的系數(shù)a=y1/(x1*x2)(y1為截距)
求根公式
二次函數(shù)表達(dá)式的右邊通常為二次三項(xiàng)式。
x是自變量,y是x的二次函數(shù)
x1,x2=[-b±(√(b^2-4ac))]/2a
(即一元二次方程求根公式)
求根的方法還有因式分解法和配方法
在平面直角坐標(biāo)系中作出二次函數(shù)y=2x的平方的圖像,可以看出,二次函數(shù)的圖像是一條永無止境的拋物線。不同的二次函數(shù)圖像如果所畫圖形準(zhǔn)確無誤,那么二次函數(shù)將是由一般式平移得到的。
注意:草圖要有1本身圖像,旁邊注明函數(shù)。
2畫出對稱軸,并注明X=什么
3與X軸交點(diǎn)坐標(biāo),與Y軸交點(diǎn)坐標(biāo),頂點(diǎn)坐標(biāo)。拋物線的性質(zhì)
軸對稱
1.拋物線是軸對稱圖形。對稱軸為直線x=-b/2a。
對稱軸與拋物線唯一的交點(diǎn)為拋物線的頂點(diǎn)P。
特別地,當(dāng)b=0時,拋物線的對稱軸是y軸(即直線x=0)
頂點(diǎn)
2.拋物線有一個頂點(diǎn)P,坐標(biāo)為P(-b/2a,4ac-b^2;)/4a)
當(dāng)-b/2a=0時,P在y軸上;當(dāng)Δ=b^2;-4ac=0時,P在x軸上。
開口
3.二次項(xiàng)系數(shù)a決定拋物線的開口方向和大小。
當(dāng)a>0時,拋物線向上開口;當(dāng)a<0時,拋物線向下開口。
|a|越大,則拋物線的開口越小。
決定對稱軸位置的因素
4.一次項(xiàng)系數(shù)b和二次項(xiàng)系數(shù)a共同決定對稱軸的位置。
當(dāng)a與b同號時(即ab>0),對稱軸在y軸左;因?yàn)槿魧ΨQ軸在左邊則對稱軸小于0,也就是-b/2a<0,所以b/2a要大于0,所以a、b要同號
當(dāng)a與b異號時(即ab<0),對稱軸在y軸右。因?yàn)閷ΨQ軸在右邊則對稱軸要大于0,也就是-b 2a="">0,所以b/2a要小于0,所以a、b要異號可簡單記憶為左同右異,即當(dāng)a與b同號時(即ab>0),對稱軸在y軸左;當(dāng)a與b異號時(即ab<0),對稱軸在y軸右。
事實(shí)上,b有其自身的幾何意義:拋物線與y軸的交點(diǎn)處的該拋物線切線的函數(shù)解析式(一次函數(shù))的斜率k的值?赏ㄟ^對二次函數(shù)求導(dǎo)得到。
決定拋物線與y軸交點(diǎn)的因素
5.常數(shù)項(xiàng)c決定拋物線與y軸交點(diǎn)。
拋物線與y軸交于(0,c)
拋物線與x軸交點(diǎn)個數(shù)
6.拋物線與x軸交點(diǎn)個數(shù)
Δ=b^2-4ac>0時,拋物線與x軸有2個交點(diǎn)。
Δ=b^2-4ac=0時,拋物線與x軸有1個交點(diǎn)。
Δ=b^2-4ac<0時,拋物線與x軸沒有交點(diǎn)。X的取值是虛數(shù)(x=-b±√b^2-4ac的值的相反數(shù),乘上虛數(shù)i,整個式子除以2a)
當(dāng)a>0時,函數(shù)在x=-b/2a處取得最小值f(-b/2a)=4ac-b/4a;在{x|x<-b/2a}上是減函數(shù),在{x|x>-b/2a}上是增函數(shù);拋物線的開口向上;函數(shù)的值域是{y|y≥4ac-b^2/4a}相反不變
當(dāng)b=0時,拋物線的對稱軸是y軸,這時,函數(shù)是偶函數(shù),解析式變形為y=ax^2c(a≠0)
特殊值的形式
7.特殊值的形式
①當(dāng)x=1時y=abc
、诋(dāng)x=-1時y=a-bc
、郛(dāng)x=2時y=4a2bc
④當(dāng)x=-2時y=4a-2bc
二次函數(shù)的性質(zhì)
8.定義域:R
值域:(對應(yīng)解析式,且只討論a大于0的情況,a小于0的情況請讀者自行推斷)①[(4ac-b^2)/4a,
正無窮);②[t,正無窮)
奇偶性:當(dāng)b=0時為偶函數(shù),當(dāng)b≠0時為非奇非偶函數(shù)。
周期性:無
解析式:
、賧=ax^2bxc[一般式]
、臿≠0
、芶>0,則拋物線開口朝上;a<0,則拋物線開口朝下;
、菢O值點(diǎn):(-b/2a,(4ac-b^2)/4a);
、圈=b^2-4ac,
Δ>0,圖象與x軸交于兩點(diǎn):
([-b-√Δ]/2a,0)和([-b√Δ]/2a,0);
Δ=0,圖象與x軸交于一點(diǎn):(-b/2a,0);
Δ<0,圖象與x軸無交點(diǎn);
②y=a(x-h)^2k[頂點(diǎn)式]
此時,對應(yīng)極值點(diǎn)為(h,k),其中h=-b/2a,k=(4ac-b^2)/4a;
、踶=a(x-x1)(x-x2)[交點(diǎn)式(雙根式)](a≠0)
對稱軸X=(X1X2)/2當(dāng)a>0且X≧(X1X2)/2時,Y隨X的增大而增大,當(dāng)a>0且X≦(X1X2)/2時Y隨X的增大而減小
此時,x1、x2即為函數(shù)與X軸的兩個交點(diǎn),將X、Y代入即可求出解析式(一般與一元二次方程連用)。
交點(diǎn)式是Y=A(X-X1)(X-X2)知道兩個x軸交點(diǎn)和另一個點(diǎn)坐標(biāo)設(shè)交點(diǎn)式。兩交點(diǎn)X值就是相應(yīng)X1X2值。
26.2用函數(shù)觀點(diǎn)看一元二次方程
1.如果拋物線與x軸有公共點(diǎn),公共點(diǎn)的橫坐標(biāo)是,那么當(dāng)時,函數(shù)的值是0,因此就是方程的一個根。
2.二次函數(shù)的圖象與x軸的位置關(guān)系有三種:沒有公共點(diǎn),有一個公共點(diǎn),有兩個公共點(diǎn)。這對應(yīng)著一元二次方程根的三種情況:沒有實(shí)數(shù)根,有兩個相等的實(shí)數(shù)根,有兩個不等的實(shí)數(shù)根。
26.3實(shí)際問題與二次函數(shù)
在日常生活、生產(chǎn)和科研中,求使材料最省、時間最少、效率最高等問題,有些可歸結(jié)為求二次函數(shù)的最大值或最小值。
【初三函數(shù)知識點(diǎn)總結(jié)】相關(guān)文章:
分段函數(shù)04-01
證明函數(shù)單調(diào)性的方法總結(jié)范文07-28
《函數(shù)的概念》教案06-25
函數(shù)教學(xué)論文05-08
函數(shù)表達(dá)式和函數(shù)聲明有什么不同04-01
物理知識點(diǎn)總結(jié)06-05
兒科知識點(diǎn)總結(jié)05-24
動量知識點(diǎn)總結(jié)05-31
英語知識點(diǎn)總結(jié)12-02