- 相關(guān)推薦
復(fù)數(shù)的概念教案
作為一名教學(xué)工作者,可能需要進(jìn)行教案編寫(xiě)工作,借助教案可以更好地組織教學(xué)活動(dòng)。教案應(yīng)該怎么寫(xiě)才好呢?以下是小編精心整理的復(fù)數(shù)的概念教案,歡迎閱讀,希望大家能夠喜歡。
復(fù)數(shù)的概念教案1
教學(xué)目標(biāo)
。1)掌握復(fù)數(shù)的有關(guān)概念,如虛數(shù)、純虛數(shù)、復(fù)數(shù)的實(shí)部與虛部、兩復(fù)數(shù)相等、復(fù)平面、實(shí)軸、虛軸、共軛復(fù)數(shù)、共軛虛數(shù)的概念。
。2)正確對(duì)復(fù)數(shù)進(jìn)行分類(lèi),掌握數(shù)集之間的從屬關(guān)系;
(3)理解復(fù)數(shù)的幾何意義,初步掌握復(fù)數(shù)集C和復(fù)平面內(nèi)所有的點(diǎn)所成的集合之間的一一對(duì)應(yīng)關(guān)系。
。4)培養(yǎng)學(xué)生數(shù)形結(jié)合的數(shù)學(xué) 思想,訓(xùn)練學(xué)生條理的邏輯思維能力.
教學(xué)建議
。ㄒ唬┙滩姆治
1 、知識(shí)結(jié)構(gòu)
本節(jié)首先介紹了復(fù)數(shù)的有關(guān)概念,然后指出復(fù)數(shù)相等的充要條件,接著介紹了有關(guān)復(fù)數(shù)的幾何表示,最后指出了有關(guān)共軛復(fù)數(shù)的概念.
2 、重點(diǎn)、難點(diǎn)分析
。1)正確復(fù)數(shù)的實(shí)部與虛部
對(duì)于復(fù)數(shù),實(shí)部是,虛部是.注意在說(shuō)復(fù)數(shù)時(shí),一定有,否則,不能說(shuō)實(shí)部是,虛部是,復(fù)數(shù)的實(shí)部和虛部都是實(shí)數(shù)。
說(shuō)明:對(duì)于復(fù)數(shù)的定義,特別要抓住這一標(biāo)準(zhǔn)形式以及是實(shí)數(shù)這一概念,這對(duì)于解有關(guān)復(fù)數(shù)的問(wèn)題將有很大的幫助。
(2)正確地對(duì)復(fù)數(shù)進(jìn)行分類(lèi),弄清數(shù)集之間的關(guān)系
分類(lèi)要求不重復(fù)、不遺漏,同一級(jí)分類(lèi)標(biāo)準(zhǔn)要統(tǒng)一。根據(jù)上述原則,復(fù)數(shù)集的分類(lèi)如下:
注意分清復(fù)數(shù)分類(lèi)中的界限:
①設(shè),則為實(shí)數(shù)
②為虛數(shù)
、矍。
④為純虛數(shù)且
。3)不能亂用復(fù)數(shù)相等的條件解題.用復(fù)數(shù)相等的條件要注意:
①化為復(fù)數(shù)的標(biāo)準(zhǔn)形式
、趯(shí)部、虛部中的字母為實(shí)數(shù),即
。4)在講復(fù)數(shù)集與復(fù)平面內(nèi)所有點(diǎn)所成的集合一一對(duì)應(yīng)時(shí),要注意:
①任何一個(gè)復(fù)數(shù)都可以由一個(gè)有序?qū)崝?shù)對(duì)( )唯一確定.這就是說(shuō),復(fù)數(shù)的實(shí)質(zhì)是有序?qū)崝?shù)對(duì).一些書(shū)上就是把實(shí)數(shù)對(duì)( )叫做復(fù)數(shù)的.
、趶(fù)數(shù)用復(fù)平面內(nèi)的點(diǎn)Z( )表示.復(fù)平面內(nèi)的點(diǎn)Z的坐標(biāo)是( ),而不是( ),也就是說(shuō),復(fù)平面內(nèi)的縱坐標(biāo)軸上的單位長(zhǎng)度是1,而不是.由于=0+1 ?,所以用復(fù)平面內(nèi)的點(diǎn)(0,1)表示時(shí),這點(diǎn)與原點(diǎn)的距離是1,等于縱軸上的單位長(zhǎng)度.這就是說(shuō),當(dāng)我們把縱軸上的點(diǎn)(0,1)標(biāo)上虛數(shù)時(shí),不能以為這一點(diǎn)到原點(diǎn)的距離就是虛數(shù)單位,或者就是縱軸的單位長(zhǎng)度.
③當(dāng)時(shí),對(duì)任何,是純虛數(shù),所以縱軸上的點(diǎn)( )( )都是表示純虛數(shù).但當(dāng)時(shí),是實(shí)數(shù).所以,縱軸去掉原點(diǎn)后稱(chēng)為虛軸.
由此可見(jiàn),復(fù)平面(也叫高斯平面)與一般的坐標(biāo)平面(也叫笛卡兒平面)的區(qū)別就是復(fù)平面的虛軸不包括原點(diǎn),而一般坐標(biāo)平面的原點(diǎn)是橫、縱坐標(biāo)軸的公共點(diǎn).
、軓(fù)數(shù)z=a+bi中的z,書(shū)寫(xiě)時(shí)小寫(xiě),復(fù)平面內(nèi)點(diǎn)Z(a,b)中的Z,書(shū)寫(xiě)時(shí)大寫(xiě).要學(xué)生注意.
。5)關(guān)于共軛復(fù)數(shù)的概念
設(shè),則,即與的實(shí)部相等,虛部互為相反數(shù)(不能認(rèn)為與或是共軛復(fù)數(shù)).
教師可以提一下當(dāng)時(shí)的特殊情況,即實(shí)軸上的點(diǎn)關(guān)于實(shí)軸本身對(duì)稱(chēng),例如:5和-5也是互為共軛復(fù)數(shù).當(dāng)時(shí),與互為共軛虛數(shù).可見(jiàn),共軛虛數(shù)是共軛復(fù)數(shù)的特殊情行.
。6)復(fù)數(shù)能否比較大小
教材最后指出:“兩個(gè)復(fù)數(shù),如果不全是實(shí)數(shù),就不能比較它們的大小”,要注意:
、俑鶕(jù)兩個(gè)復(fù)數(shù)相等地定義,可知在兩式中,只要有一個(gè)不成立,那么.兩個(gè)復(fù)數(shù),如果不全是實(shí)數(shù),只有相等與不等關(guān)系,而不能比較它們的大。
②命題中的“不能比較它們的大小”的確切含義是指:“不論怎樣定義兩個(gè)復(fù)數(shù)間的一個(gè)關(guān)系‘ < ’,都不能使這關(guān)系同時(shí)滿(mǎn)足實(shí)數(shù)集中大小關(guān)系地四條性質(zhì)”:
(i)對(duì)于任意兩個(gè)實(shí)數(shù)a,b來(lái)說(shuō),a<b,a=b,b<a這三種情形有且僅有一種成立;
(ii)如果a<b,b<c,那么a<c;
(iii)如果a<b,那么a+c<b+c;
(iv)如果a<b,c>0,那么ac<bc.(不必向?qū)W生講解)
。ǘ┙谭ńㄗh
1.要注意知識(shí)的連續(xù)性:復(fù)數(shù)是二維數(shù),其幾何意義是一個(gè)點(diǎn),因而注意與平面解析幾何的聯(lián)系.
2.注意數(shù)形結(jié)合的數(shù)形思想:由于復(fù)數(shù)集與復(fù)平面上的點(diǎn)的集合建立了一一對(duì)應(yīng)關(guān)系,所以用“形”來(lái)解決“數(shù)”就成為可能,在本節(jié)要注意復(fù)數(shù)的幾何意義的講解,培養(yǎng)學(xué)生數(shù)形結(jié)合的'數(shù)學(xué) 思想.
3.注意分層次的教學(xué):教材中最后對(duì)于“兩個(gè)復(fù)數(shù),如果不全是實(shí)數(shù)就不能本節(jié)它們的大小”沒(méi)有證明,如果有學(xué)生提出來(lái)了,在課堂上不要給全體學(xué)生證明,可以在課下給學(xué)有余力的學(xué)生進(jìn)行解答.
復(fù)數(shù)的有關(guān)概念
教學(xué)目標(biāo)
1.了解復(fù)數(shù)的實(shí)部,虛部;
2.掌握復(fù)數(shù)相等的意義;
3.了解并掌握共軛復(fù)數(shù),及在復(fù)平面內(nèi)表示復(fù)數(shù).
教學(xué)重點(diǎn)
復(fù)數(shù)的概念,復(fù)數(shù)相等的充要條件.
教學(xué)難點(diǎn)
用復(fù)平面內(nèi)的點(diǎn)表示復(fù)數(shù)M.
教學(xué)用具:直尺
課時(shí)安排:1課時(shí)
教學(xué)過(guò)程:
一、復(fù)習(xí)提問(wèn):
1.復(fù)數(shù)的定義。
2.虛數(shù)單位。
二、講授新課
1.復(fù)數(shù)的實(shí)部和虛部:
復(fù)數(shù)中的a與b分別叫做復(fù)數(shù)的實(shí)部和虛部。
2.復(fù)數(shù)相等
如果兩個(gè)復(fù)數(shù)與的實(shí)部與虛部分別相等,就說(shuō)這兩個(gè)復(fù)數(shù)相等。
即:的充要條件是且。
例如:的充要條件是且。
例1:已知其中,求 x 與 y .
解:根據(jù)復(fù)數(shù)相等的意義,得方程組:
∴
例2: m 是什么實(shí)數(shù)時(shí),復(fù)數(shù),
(1)是實(shí)數(shù),(2)是虛數(shù),(3)是純虛數(shù).
解:
(1) ∵時(shí), z 是實(shí)數(shù),
∴ ,或.
(2) ∵時(shí), z 是虛數(shù),
∴,且
(3) ∵且時(shí),
z 是純虛數(shù). ∴
3.用復(fù)平面(高斯平面)內(nèi)的點(diǎn)表示復(fù)數(shù)
復(fù)平面的定義
建立了直角坐標(biāo)系表示復(fù)數(shù)的平面,叫做復(fù)平面.
復(fù)數(shù)可用點(diǎn)來(lái)表示.(如圖)其中 x 軸叫實(shí)軸, y 軸除去原點(diǎn)的部分叫虛軸,表示實(shí)數(shù)的點(diǎn)都在實(shí)軸上,表示純虛數(shù)的點(diǎn)都在虛軸上。原點(diǎn)只在實(shí)軸 x 上,不在虛軸上.
4.復(fù)數(shù)的幾何意義:
復(fù)數(shù)集 c 和復(fù)平面所有的點(diǎn)的集合是一一對(duì)應(yīng)的.
5.共軛復(fù)數(shù)
(1)當(dāng)兩個(gè)復(fù)數(shù)實(shí)部相等,虛部互為相反數(shù)時(shí),這兩個(gè)復(fù)數(shù)叫做互為共軛復(fù)數(shù)。(虛部不為零也叫做互為共軛復(fù)數(shù))
。2)復(fù)數(shù) z 的共軛復(fù)數(shù)用表示.若,則:;
。3)實(shí)數(shù) a 的共軛復(fù)數(shù)仍是 a 本身,純虛數(shù)的共軛復(fù)數(shù)是它的相反數(shù).
。4)復(fù)平面內(nèi)表示兩個(gè)共軛復(fù)數(shù)的點(diǎn)z與關(guān)于實(shí)軸對(duì)稱(chēng).
三、練習(xí)1,2,3,4.
四、小結(jié):
1.在理解復(fù)數(shù)的有關(guān)概念時(shí)應(yīng)注意:
。1)明確什么是復(fù)數(shù)的實(shí)部與虛部;
(2)弄清實(shí)數(shù)、虛數(shù)、純虛數(shù)分別對(duì)實(shí)部與虛部的要求;
。3)弄清復(fù)平面與復(fù)數(shù)的幾何意義;
。4)兩個(gè)復(fù)數(shù)不全是實(shí)數(shù)就不能比較大小。
2.復(fù)數(shù)集與復(fù)平面上的點(diǎn)注意事項(xiàng):
(1)復(fù)數(shù)中的 z ,書(shū)寫(xiě)時(shí)小寫(xiě),復(fù)平面內(nèi)點(diǎn)Z( a , b )中的Z,書(shū)寫(xiě)時(shí)大寫(xiě)。
。2)復(fù)平面內(nèi)的點(diǎn)Z的坐標(biāo)是( a , b ),而不是( a , bi ),也就是說(shuō),復(fù)平面內(nèi)的縱坐標(biāo)軸上的單位長(zhǎng)度是1,而不是 i 。
(3)表示實(shí)數(shù)的點(diǎn)都在實(shí)軸上,表示純虛數(shù)的點(diǎn)都在虛軸上。
。4)復(fù)數(shù)集C和復(fù)平面內(nèi)所有的點(diǎn)組成的集合一一對(duì)應(yīng):
五、作業(yè)1,2,3,4,
復(fù)數(shù)的概念教案2
一、教學(xué)目標(biāo)
本課時(shí)的教學(xué)目標(biāo)為:
①借助直角坐標(biāo)系建立復(fù)平面,掌握復(fù)數(shù)的幾何形式和向量表示;
②經(jīng)歷復(fù)平面上復(fù)數(shù)的“形化”過(guò)程,理解復(fù)數(shù)與復(fù)平面上的點(diǎn)、向量之間的一一對(duì)應(yīng)關(guān)系;
、鄹形驍(shù)學(xué)的釋義:數(shù)學(xué)是研究空間形式和數(shù)量關(guān)系的科學(xué)、筆者認(rèn)為,教學(xué)目標(biāo)總體設(shè)置得較為適切,符合三維框架、修改:“掌握復(fù)數(shù)的幾何形式和向量表示”改為“掌握在復(fù)平面上復(fù)數(shù)的點(diǎn)表示和向量表示”。
二、教學(xué)重點(diǎn)
本課時(shí)的教學(xué)重點(diǎn)為:復(fù)數(shù)的坐標(biāo)表示:幾何形式與向量表示、教學(xué)重點(diǎn)設(shè)置得較為適切,部分用詞表達(dá)配合教學(xué)目標(biāo)一并修改、修改:復(fù)數(shù)的坐標(biāo)表示:點(diǎn)表示與向量表示。
三、教學(xué)難點(diǎn)
本課時(shí)的教學(xué)難點(diǎn)為:復(fù)數(shù)的代數(shù)形式、幾何形式及向量表示的“同一性”、首先,“同一性”說(shuō)法有待商榷,這個(gè)詞有著嚴(yán)格的定義,使用時(shí)需謹(jǐn)慎、其次,經(jīng)過(guò)思考,復(fù)數(shù)的代數(shù)表示、點(diǎn)表示及向量表示之間的互相轉(zhuǎn)化才是本課時(shí)的教學(xué)難點(diǎn)。
四、教學(xué)過(guò)程
。ㄒ唬╊(lèi)比引入
本環(huán)節(jié)通過(guò)實(shí)數(shù)在數(shù)軸上的“形化”表示,類(lèi)比至復(fù)數(shù),引出復(fù)數(shù)的“幾何形式”:復(fù)平面與點(diǎn)、但在設(shè)問(wèn)中,有一提問(wèn)值得商榷:實(shí)數(shù)的幾何形式是什么?此提問(wèn)較為唐突,在試講課與正式課中學(xué)生均表示難以理解,原因如下:
①學(xué)生最近發(fā)展區(qū)中未具備“實(shí)數(shù)的幾何形式”;
②實(shí)數(shù)的幾何形式是教師引導(dǎo)學(xué)生對(duì)數(shù)的一種有高度的認(rèn)識(shí)與表達(dá),屬于理解層面、經(jīng)過(guò)思考,修改:
、偃绾巍爱(huà)”實(shí)數(shù)?
、趯(duì)學(xué)生直接陳述:我們知道,每一個(gè)實(shí)數(shù)都有數(shù)軸上唯一確定的一個(gè)點(diǎn)和它對(duì)應(yīng);反過(guò)來(lái),數(shù)軸上的每一個(gè)點(diǎn)也有唯一的一個(gè)實(shí)數(shù)和它對(duì)應(yīng)。
(二)概念新授
本環(huán)節(jié)給出復(fù)平面的定義及相關(guān)概念,并且?guī)椭鷮W(xué)生形成復(fù)數(shù)與復(fù)平面上點(diǎn)兩者間的一一對(duì)應(yīng)關(guān)系、教學(xué)設(shè)計(jì)中對(duì)概念的注釋是:表示實(shí)數(shù)的點(diǎn)都在實(shí)軸上,表示純虛數(shù)的點(diǎn)都在虛軸上,表示虛數(shù)的點(diǎn)在四個(gè)象限或虛軸上,表示實(shí)數(shù)的點(diǎn)為原點(diǎn)、經(jīng)過(guò)思考,修改:表示實(shí)數(shù)的點(diǎn)都在實(shí)軸上、實(shí)軸上的點(diǎn)表示全體實(shí)數(shù);表示純虛數(shù)的點(diǎn)都在虛軸上、虛軸上的點(diǎn)表示全體純虛數(shù)與實(shí)數(shù);表示虛數(shù)的點(diǎn)不在實(shí)軸上;實(shí)數(shù)與原點(diǎn)一一對(duì)應(yīng)。
。ㄈ├}體驗(yàn)
本環(huán)節(jié)通過(guò)三個(gè)例題體驗(yàn),落實(shí)本課時(shí)的教學(xué)重點(diǎn)之一:復(fù)數(shù)的坐標(biāo)表示:點(diǎn)表示;突破本課時(shí)的教學(xué)難點(diǎn):復(fù)數(shù)的代數(shù)表示、點(diǎn)表示及向量表示之間的互相轉(zhuǎn)化、例題1對(duì)課本例題作了改編,此例題的設(shè)計(jì)意圖為從復(fù)平面上的點(diǎn)出發(fā),去表示對(duì)應(yīng)的復(fù)數(shù),并且蘊(yùn)含了計(jì)數(shù)原理中的乘法原理、值得一提的是,在課堂教學(xué)實(shí)施過(guò)程中,學(xué)生很清晰地建立起了兩者之間的轉(zhuǎn)化關(guān)系,并且使用了乘法原理、例題2的設(shè)計(jì)意圖是從復(fù)數(shù)出發(fā)去在復(fù)平面上表示對(duì)應(yīng)的點(diǎn),而例題3的設(shè)計(jì)意圖是從單個(gè)復(fù)數(shù)與其在復(fù)平面上的對(duì)應(yīng)點(diǎn)之間的轉(zhuǎn)化到兩個(gè)復(fù)數(shù)與其在復(fù)平面上對(duì)應(yīng)點(diǎn)之間的'互相轉(zhuǎn)化、例題2與例題3的設(shè)計(jì)符合學(xué)生的認(rèn)知規(guī)律,但是在教學(xué)過(guò)程中沒(méi)有配以圖形來(lái)幫助學(xué)生理解,這是整個(gè)教學(xué)過(guò)程中的最大不足。
。ㄋ模└拍钐嵘
本環(huán)節(jié)繼復(fù)數(shù)在復(fù)平面上的點(diǎn)表示之后,給出復(fù)數(shù)的向量表示,呈現(xiàn)了完整的復(fù)數(shù)的坐標(biāo)表示、學(xué)生已經(jīng)建構(gòu)起復(fù)數(shù)集中的復(fù)數(shù)與復(fù)平面上的點(diǎn)之間的一一對(duì)應(yīng)關(guān)系,結(jié)合他們的最近發(fā)展區(qū):建立了直角坐標(biāo)系的平面中的任意點(diǎn)均與唯一的位置向量一一對(duì)應(yīng),從而較為順利地架構(gòu)起復(fù)數(shù)與向量的一一對(duì)應(yīng)關(guān)系、設(shè)計(jì)的例題是由筆者改編的,整合了向量與復(fù)數(shù)、點(diǎn)與復(fù)數(shù)以及向量與點(diǎn)之間的互相轉(zhuǎn)化,鞏固三者之間的一一對(duì)應(yīng)關(guān)系、值得一提的是,設(shè)計(jì)的第3小問(wèn)具有開(kāi)放性,啟發(fā)學(xué)生去探究由向量加法的坐標(biāo)表示引出復(fù)數(shù)加法法則,在課堂教學(xué)實(shí)踐中,已有學(xué)生產(chǎn)生這樣的思考。
在之后的教研組研評(píng)課中,老師們給出了對(duì)這節(jié)課的認(rèn)可與中肯的建議,讓筆者受益匪淺,筆者經(jīng)過(guò)思考已經(jīng)在上文中的各環(huán)節(jié)修改處得以體現(xiàn)落實(shí)、不過(guò)仍然有一點(diǎn)困惑,有老師提出甚至筆者備課時(shí)也有這樣的猶豫:本課時(shí)是否將下一課時(shí)“復(fù)數(shù)的!币徊⒔o出、筆者在不斷思考教材分割成兩課時(shí)的用意,結(jié)合試講與上課的兩次實(shí)踐也說(shuō)明,筆者所在學(xué)校的學(xué)生更適合這樣的分割,第一課時(shí)讓學(xué)生從不同角度感受復(fù)數(shù),第二課時(shí)用模來(lái)鞏固深化復(fù)數(shù)的坐標(biāo)表示、本課時(shí)的課題是復(fù)數(shù)的坐標(biāo)表示,蘊(yùn)含了點(diǎn)坐標(biāo)表示與向量坐標(biāo)表示兩塊,第一課時(shí)先打開(kāi)認(rèn)識(shí)的視角,第二課時(shí)通過(guò)模來(lái)深入體驗(yàn)、
當(dāng)然教無(wú)定法,根據(jù)學(xué)情、因材施教,在理解教材設(shè)計(jì)意圖的基礎(chǔ)上對(duì)教材進(jìn)行科學(xué)合理的改編也是很有必要的。
【復(fù)數(shù)的概念教案】相關(guān)文章:
批復(fù)的概念07-28
飲食禮儀的概念03-03
社交禮儀概念12-08
會(huì)議總結(jié)的概念特點(diǎn)11-07
飲食禮儀的概念和功能04-18