- 相關推薦
全等三角形的復習教案
教材分析:
《三角形全等復習課內(nèi)容》選用義務教育課程標準實驗教材《數(shù)學》(華師大版)九年級上冊,三角形全等是初中數(shù)學中重要的學習內(nèi)容之一。本套教材把三角形全等看作是三角形相似的特殊情況,同時三角形全等的概念,三角形全等的識別方法,與命題與證明,尺規(guī)作圖幾部分內(nèi)容相互聯(lián)系緊密,尤其是尺規(guī)作圖中作法的合理性和正確性的解釋依賴于全等知識。本章中三角形全等的識別方法的給出都通過學生畫圖、討論、交流、比較得出,注重學生實際操作能力,為培養(yǎng)學生參與意識和創(chuàng)新意識提供了機會。
設計理念:
針對教材內(nèi)容和初三學生的實際情況,組織學生通過擺拼全等三角形和探求全等三角形的活動,讓學生感悟到圖形全等與平移、旋轉、對稱之間的關系,并通過學生動手操作,讓學生掌握全等三角形的一些基本形式,在探求全等三角形的過程中,做到有的放矢。然后利用角平分線為對稱軸來畫全等三角形的方法來解決實際問題,從而達到會辨、會找、會用全等三角形知識的目的。
教學目標:
1、通過全等三角形的概念和識別方法的復習,讓學生體會辨別、探尋、運用全等三角形的一般方法,體會主動實驗,探究新知的方法。
2、培養(yǎng)學生觀察和理解能力,幾何語言的敘述能力及運用全等知識解決實際問題的能力。
3、在學生操作過程中,激發(fā)學生學習的興趣,培養(yǎng)學生主動探索,敢于實踐的精神,培養(yǎng)學生之間合作交流的習慣。
教學的重點和難點:
重點:運用全等三角形的識別方法來探尋三角形以及運用全等三角形的知識解決實際問題。
難點:運用全等三角形知識來解決實際問題。
教學過程設計:
一、創(chuàng)設問題情境:
某同學把一塊三角形的玻璃打碎成三片,現(xiàn)在他要到玻璃店去配一塊形狀完全相同的玻璃,那么你認為它應保留哪一塊?(教師用多媒體)
師:請同學們先獨立思考,然后小組交流意見
生:…………
師:上述問題實質是判斷三角形全等需要什么條件的問題。
今天我們這節(jié)課來復習全等三角形。(引出課題)。
師:識別三角形及等的方法有哪些?
生:SAS 、 SSS、 ASA、 AAS 、 HL。
復習回顧:練習1、將兩根鋼條AA/、BB/中點O連在一起,使AA/、BB/繞著點O自由轉動,做成一個測量工具,則A/B/的長等于內(nèi)槽寬AB,判定△OAB≌△OA/B/現(xiàn)由( )
練習2、已知AB//DE,且AB=DE,
(1)請你只添加一個條件,使△ABC≌△DEF,
你添加的條件是
(2)添加條件后,證明△ABC≌△DEF?
[根據(jù)不同的添加條件,要求學生能夠敘述三角形全等的條件和全等的現(xiàn)由,鼓勵學生大膽的表述意見]
二、探求新知:
師:請同學們將兩張紙疊起來,剪下兩個全等三角形,然后將疊合的兩個三角形紙片放在桌面上,從平移、旋轉、對稱幾個方面進行擺放,看看兩個三角形有一些怎樣的特殊位置關系?
請同組合作,交流,并把有代表性的擺放進行投影。
熟記全等三角形的基本形式,為探求全等三角形打下基礎,提醒學生注意兩個全等三角形的對應邊和對應角。學生的擺放形式很多,包括那些平時數(shù)學成績不好的學生也躍躍欲試,教師給予肯定和鼓勵激發(fā)他們學習的積極性和主動性。
例1、一張矩形紙片沿著對角線剪開,得到兩張三角形紙片ABC、DEF,再將這兩張三角形紙片擺成右圖的形式,使點B、F、C、D處在同一條直線上,P、M、N為其他直線的交點。
(1)求證:AB⊥ED
(2)若PB=BC,請找出右圖中全等三角形,并給予證明。
用多媒體演示圖形的變化過程。
師:圖3中AB與ED有怎樣的位置關系?同學生猜想一下結果。
生甲:AB垂直ED
師:為什么?可以從幾方面來考慮?
生乙:可以從圖形運動變化的過程來考慮
生丙:可以考慮全等在已知條件下,顯然有△ABC≌△DEF,故∠A=∠D,又∠ANP=∠DNC,所以,∠APN=∠DCN=900,即AB⊥ED。
(根據(jù)學生的回答,教師板演)
師:若PB=BC,找出右圖中全等三角形,看看誰能找得最快?
生丁:△PBD≌△CBA(ASA)
師:板演,由AB⊥ED,可得到∠BPD=900,∠BPD=∠CBA,∠A=∠D,PB=BC,故有△PBD≌△CBA(ASA)。
師:還有其他三角形全等嗎?
生:有,我連接BN,由勾股定理得PN=CN,就不難得到△APN≌△DCN。
(在錯綜復雜的圖形中尋找全等三角形是一件不容易的事,要鼓勵學生大膽的猜想,努力探求,在學生的敘述過程中,教師及時糾正學生敘述中的錯誤,訓練學生嚴謹?shù)膶W習態(tài)度和學習習慣。)
例2、(動手畫)(1)已知OP為∠AOB平分線,請你利用該圖畫一對以OP所在直線為對稱軸的全等三角形。
教師在黑板上畫好∠AOB和直線OP,學生獨立思考,然后請幾個學生在黑板上演示。
師生總結:想要畫出符合條件的三角形,只要在射線OA、OB上找到一對關于OP對稱的點就可以了。
(2)利用上圖作全等三角形方法,在△ABC中,∠B=600,∠ABC是直角,AD、CE是∠BAC,∠DCA的平分線,AD、CE相交于F,請判斷FE與FD間數(shù)量關系。
師:請同學們用三角尺和量角器準確畫出此圖,然后量出EF、FD的長度,看看EF與FD長度
關系如何?
生:基本相等。
生:長度相等。
師:如何來證明他們相等?注意審題。
學生先獨立思考后,組內(nèi)交流,等到有同學舉手發(fā)言。
生:在AC上取點H,使AH=AE,則△AEF≌△AHF則EF=FH
師:為什么要這么做?你是怎么想到的?
生:因為要證明線段相等要考慮三角形全等,而EF、FD所在兩個三角形顯然不全等,又AD是平分線,在AC上找出E關于AD有對稱點H得到△AEF≌△AHF。
師:這樣只能得到EF=FH。
生:再證明△FHC≌△FDC。
生:先求出AD、CE是角平分線∠APC=1200,則∠DPC=∠EPA=∠APH=600,所以∠HPC=
∠DPC=600,PC=PC,∠3=∠4,因為△HCP≌△DCP(ASA)所以PD=PH。
(看清題意,猜想結果是解決探究題的重要環(huán)節(jié),教師要留給學生一定思考時間,同時鼓勵學生嘗試和交流,鼓勵學生勇于探索以及同學之間的合作。)
師生共同小結:
1、熟記全等三角形的基本形態(tài),會找全等三角形的對應邊和對應角。
2、在錯綜復雜的幾何圖形中能夠尋找全等三角形。
3、利用角平分線的對稱性構造三角形全等,并利用三角形的全等性質解決線段之間的等量關系。
4、運用全等三角形的識別法可以解決很多生活實際問題。
作業(yè):
1、在例2中,如果∠ACB不是直角,而(1)中的其他條件不變,請問:你在(1)中所得結論能成立嗎?若成立,請證明,若不成立,請說明理由。
2、書本課后復習題
教學反思:
本教學設計從以下三方面考慮:
1、根據(jù)學生的學習情況,改進學生的學習方式,強調合作交流,探索學習,教師在教學過程中,努力為學生創(chuàng)設自主探索的氛圍,讓學生真正成為課堂主體。
2、重視對學生能力的培養(yǎng),除常規(guī)的鼓勵就大膽思考,積極發(fā)言,重視培養(yǎng)學生觀察、操作、測試、思考的能力,學生的活躍,他們思考問題的方式是多種多樣,教師從對完全更改,尊重他們的學習方式,這樣有助于創(chuàng)新
3、重視對學生學習習慣的培養(yǎng),全等三角形是幾何部分內(nèi)容說明書,有較強邏輯性,教師板演,以及在學生敘述中糾正學生的錯誤,是培養(yǎng)學生養(yǎng)成良好的習慣之一,同時學生學習習慣多方面的,在合作交流中,培養(yǎng)學生合作意識和合作習慣培養(yǎng)顯得尤為重要。
【全等三角形的復習教案】相關文章:
全等三角形的教案02-24
全等三角形教案05-25
全等三角形的判定教案10-07
全等三角形的教學教案10-07
《全等三角形的判定》教案03-18
(精華)全等三角形教案11-21
全等三角形教學方案10-07
有關初中數(shù)學教案之全等三角形10-07
全等三角形的識別教案(通用10篇)12-01
全等三角形數(shù)學教案設計參考10-07