亚洲色影视在线播放_国产一区+欧美+综合_久久精品少妇视频_制服丝袜国产网站

方案

數(shù)學(xué)《解二元一次方程組》教學(xué)方案設(shè)計

時間:2022-10-08 03:22:04 方案 我要投稿
  • 相關(guān)推薦

數(shù)學(xué)《解二元一次方程組》教學(xué)方案設(shè)計

  以下是數(shù)學(xué)網(wǎng)為您推薦的7.2解二元一次方程組教案,希望本篇文章對您學(xué)習有所幫助。

數(shù)學(xué)《解二元一次方程組》教學(xué)方案設(shè)計

  7.2解二元一次方程組

  一.教學(xué)目標

  (一)教學(xué)知識點

  1.代入消元法解二元一次方程組.

  2.解二元一次方程組時的消元思想,化未知為已知的化歸思想.

  (二)能力訓(xùn)練要求

  1.會用代入消元法解二元一次方程組.

  2.了解解二元一次方程組的消元思想,初步體會數(shù)學(xué)研究中化未知為已知的化歸思想.

  (三)情感與價值觀要求

  1.在學(xué)生了解二元一次方程組的消元思想,從而初步理解化未知為已知和化復(fù)雜問題為簡單問題的化歸思想中,享受學(xué)習數(shù)學(xué)的樂趣,提高學(xué)習數(shù)學(xué)的信心.

  2.培養(yǎng)學(xué)生合作交流,自主探索的良好習慣.

  二.教學(xué)重點

  1.會用代入消元法解二元一次方程組.

  2.了解解二元一次方程組的消元思想,初步體現(xiàn)數(shù)學(xué)研究中化未知為已知的化歸思想.

  三.教學(xué)難點

  1.消元的思想.

  2.化未知為已知的化歸思想.

  四.教學(xué)方法

  啟發(fā)自主探索相結(jié)合.

  教師引導(dǎo)學(xué)生回憶一元一次方程解決實際問題的方法并從中啟發(fā)學(xué)生如果能將二元一次方程組轉(zhuǎn)化為一元一次方程.二元一次方程便可獲解,從而通過學(xué)生自主探索總結(jié)用代入消元法解二元一次方程組的步驟.

  五.教具準備

  投影片兩張:

  第一張:例題(記作7.2 A);

  第二張:問題串(記作7.2 B).

  六.教學(xué)過程

  Ⅰ.提出疑問,引入新課

  [師生共憶]上節(jié)課我們討論過一個希望工程義演的問題;沒去觀看義演的成人有x個,兒童有y個,我們得到了方程組 成人和兒童到底去了多少人呢?

  [生]在上一節(jié)課的做一做中,我們通過檢驗 是不是方程x+y=8和方程5x+3y=34,得知這個解既是x+y=8的解,也是5x+3y=34的解,根據(jù)二元一次方程組解的定義得出 是方程組 的解.所以成人和兒童分別去了5個人和3個人.

  [師]但是,這個解是試出來的.我們知道二元一次方程的解有無數(shù)個.難道我們每個方程組的解都去這樣試?

  [生]太麻煩啦.

  [生]不可能.

  [師]這就需要我們學(xué)習二元一次方程組的解法.

  Ⅱ.講授新課

  [師]在七年級第一學(xué)期我們學(xué)過一元一次方程,也曾碰到過希望工程義演問題,當時是如何解的呢?

  [生]解:設(shè)成人去了x個,兒童去了(8-x)個,根據(jù)題意,得:

  5x+3(8-x)=34

  解得x=5

  將x=5代入8-x=8-5=3

  答:成人去了5個,兒童去了3個.

  [師]同學(xué)們可以比較一下:列二元一次方程組和列一元一次方程設(shè)未知數(shù)有何不同?列出的方程和方程組又有何聯(lián)系?對你解二元一次方程組有何啟示?

  [生]列二元一次方程組設(shè)出有兩個未知數(shù)成人去了x個,兒童去了y個.列一元一次方程設(shè)成人去了x個,兒童去了(8-x)個.y應(yīng)該等于(8-x).而由二元一次方程組的一個方程x+y=8根據(jù)等式的性質(zhì)可以推出y=8-x.

  [生]我還發(fā)現(xiàn)一元一次方程中5x+3(8-x)=34與方程組中的第二個方程5x+3y=34相比較,把5x+3y=34中的y用8-x代替就轉(zhuǎn)化成了一元一次方程.

  [師]太好了.我們發(fā)現(xiàn)了新舊知識之間的聯(lián)系,便可尋求到解決新問題的方法即將新知識轉(zhuǎn)化為舊知識便可.如何轉(zhuǎn)化呢?

  [生]上一節(jié)課我們就已知道方程組的兩個未知數(shù)所包含的意義是相同的.所以將 中的①變形,得y=8-x ③我們把y=8-x代入方程②,即將②中的y用8-x代替,這樣就有5x+3(8-x)=34.二元化成一元.

  [師]這位同學(xué)很善于思考.他用了我們在數(shù)學(xué)研究中化未知為已知的化歸思想,從而使問題得到解決.下面我們完整地解一下這個二元一次方程組.

  解:

  由①得 y=8-x ③

  將③代入②得

  5x+3(8-x)=34

  解得x=5

  把x=5代入③得y=3.

  所以原方程組的解為

  下面我們試著用這種方法來解答上一節(jié)的誰的包裹多的問題.

  [師生共析]解二元一次方程組:

  分析:我們解二元一次方程組的第一步需將其中的一個方程變形用含一個未知數(shù)的代數(shù)式表示另一個未知數(shù),把表示了的未知數(shù)代入未變形的方程中,從而將二元一次方程組轉(zhuǎn)化為一元一次方程.

  解:由①得x=2+y ③

  將③代入②得(2+y)+1=2(y-1)

  解得y=5

  把y=5代入③,得

  x=7.

  所以原方程組的解為 即老牛馱了7個包裹,小馬馱了5個包裹.

  [師]在解上面兩個二元一次方程組時,我們都是將其中的一個方程變形,即用其中一個未知數(shù)的代數(shù)式表示另一個未知數(shù),然后代入第二個未變形的方程,從而由二元轉(zhuǎn)化為一元而得到消元的目的.我們將這種方法叫代入消元法.這種解二元一次方程組的思想為消元思想.我們再來看兩個例子.

  出示投影片(7.2 A)

  [例題]解方程組

  (1)

  (2)

  (由學(xué)生自己完成,兩個同學(xué)板演).

  解:(1)將②代入①,得

  3 +2y=8

  3y+9+4y=16

  7y=7

  y=1

  將y=1代入②,得

  x=2

  所以原方程組的解是

  (2)由②,得x=13-4y ③

  將③代入①,得

  2(13-4y)+3y=16

  -5y=-10

  y=2

  將y=2代入③,得

  x=5

  所以原方程組的解是

  [師]下面我們來討論幾個問題:

  出示投影片(7.2 B)

  (1)上面解方程組的基本思路是什么?

  (2)主要步驟有哪些?

  (3)我們觀察例1和例2的解法會發(fā)現(xiàn),我們在解方程組之前,首先要觀察方程組中未知數(shù)的特點,盡可能地選擇變形后的方程較簡單和代入后化簡比較容易的方程變形,這是關(guān)鍵的一步.你認為選擇未知數(shù)有何特點的方程變形好呢?

  (由學(xué)生分組討論,教師深入?yún)⑴c到學(xué)生討論中,發(fā)現(xiàn)學(xué)生在自主探索、討論過程中的獨特想法)

  [生]我來回答第一問:解二元一次方程組的基本思路是消元,把二元變?yōu)橐辉?

  [生]我們組總結(jié)了一下解上述方程組的步驟:第一步:在已知方程組的兩個方程中選擇一個適當?shù)姆匠蹋阉冃螢橛靡粋未知數(shù)的代數(shù)式表示另一個未知數(shù).

  第二步:把表示另一個未知數(shù)的代數(shù)式代入沒有變形的另一個方程,可得一個一元一次方程.

  第三步:解這個一元一次方程,得到一個未知數(shù)的值.

  第四步:把求得的未知數(shù)的值代回到原方程組中的任意一個方程或變形后的方程(一般代入變形后的方程),求得另一個未知數(shù)的值.

  第五步:用{把原方程組的解表示出來.

  第六步:檢驗(口算或筆算在草稿紙上進行)把求得的解代入每一個方程看是否成立.

  [師]這個組的同學(xué)總結(jié)的步驟真棒,甚至連我們平時容易忽略的檢驗問題也提了出來,很值得提倡.在我們數(shù)學(xué)學(xué)習的過程中,應(yīng)該養(yǎng)成反思自己解答過程,檢驗自己答案正確與否的習慣.

  [生]老師,我代表我們組來回答第三個問題.我們認為用代入消元法解二元一次方程組時,盡量選取一個未知數(shù)的分數(shù)是1的方程進行變形;若未知數(shù)的系數(shù)都不是1,則選取系數(shù)的絕對值較小的方程變形.但我們也有一個問題要問:在例2中,我們選擇②變形這是無可厚非的,把②變形后代入①中消元得到的是一元一次方程系數(shù)都為整數(shù)也較簡便.可例1中,雖然可直接把②代入①中消去x,可得到的是含有分母的一元一次方程,并不簡便,有沒有更簡捷的方法呢?

  [師]這個問題提的太好了.下面同學(xué)們分組討論一下.如果你發(fā)現(xiàn)了更好的解法,請把你的解答過程寫到黑板上來.

  [生]解:由②得2x=y+3 ③

 、蹆蛇呁瑫r乘以2,得

  4x=2y+6 ④

  由④得2y=4x-6

  把⑤代入①得

  3x+(4x-6)=8

  解得7x=14,x=2

  把x=2代入③得y=1.

  所以原方程組的解為

  [師]真了不起,能把我們所學(xué)的知識靈活應(yīng)用,而且不拘一格,將2y整體上看作一個未知數(shù)代入方程①,這是一個科學(xué)的發(fā)明.

  Ⅲ.隨堂練習

  課本P192

  1.用代入消元法解下列方程組

  解:(1)

  將①代入②,得

  x+2x=12

  x=4.

  把x=4代入①,得

  y=8

  所以原方程組的解為

  (2)

  將①代入②,得

  4x+3(2x+5)=65

  解得x=5

  把x=5代入①得

  y=15

  所以原方程組的解為

  (3)

  由①,得x=11-y ③

  把③代入②,得

  11-y-y=7

  y=2

  把y=2代入③,得

  x=9

  所以原方程組的解為

  (4)

  由②,得x=3-2y ③

  把③代入①,得

  3(3-2y)-2y=9

  得y=0

  把y=0代入③,得x=3

  所以原方程組的解為

  注:在隨堂練習中,可以鼓勵學(xué)生通過自主探索與交流,各個學(xué)生消元的具體方法可能不同,不必強調(diào)解答過程統(tǒng)一.

  Ⅳ.課時小結(jié)

  這節(jié)課我們介紹了二元一次方程組的第一種解法代入消元法.了解到了解二元一次方程組的基本思路是消元即把二元變?yōu)橐辉?主要步驟是:將其中的一個方程中的某個未知數(shù)用含有另一個未知數(shù)的代數(shù)式表示出來,并代入另一個方程中,從而消去一個未知數(shù),化二元一次方程組為一元一次方程.解這個一元一次方程,便可得到一個未知數(shù)的值,再將所求未知數(shù)的值代入變形后的方程,便求出了一對未知數(shù)的值.即求得了方程的解.

  Ⅴ.課后作業(yè)

  1.課本習題7.2

  2.解答習題7.2第3題

 、.活動與探究

  已知代數(shù)式x2+px+q,當x=-1時,它的值是-5;當x=-2時,它的值是4,求p、q的值.

  過程:根據(jù)代數(shù)式值的意義,可得兩個未知數(shù)都是p、q的方程,即

  當x=-1時,代數(shù)式的值是-5,得

  (-1)2+(-1)p+q=-5 ①

  當x=-2時,代數(shù)式的值是4,得

  (-2)2+(-2)p+q=4 ②

  將①、②兩個方程整理,并組成方程組

  解方程組,便可解決.

  結(jié)果:由④得q=2p

  把q=2p代入③,得

  -p+2p=-6

  解得p=-6

  把p=-6代入q=2p=-12

  所以p、q的值分別為-6、-12.

  七.板書設(shè)計

  7.2 解二元一次方程組(一)

  一、希望工程義演

  二、誰的包裹多問題

  三、例題

  四、解方程組的基本思路:消元即二元一元

  五、解二元一次方程組的基本步驟

【數(shù)學(xué)《解二元一次方程組》教學(xué)方案設(shè)計】相關(guān)文章:

初中數(shù)學(xué)《二元一次方程組》的教學(xué)教案10-08

數(shù)學(xué)列方程解應(yīng)用題教學(xué)方案設(shè)計10-08

初一數(shù)學(xué)下冊《二元一次方程組的解法--代入消元法》教學(xué)方案10-08

談?wù)劧淮畏匠探M中的消元方法10-26

數(shù)學(xué)教學(xué)方案設(shè)計10-08

七年級數(shù)學(xué)二元一次方程組教案優(yōu)秀05-17

七年級數(shù)學(xué)二元一次方程組解法教案10-08

籃球數(shù)學(xué)教學(xué)方案設(shè)計10-08

數(shù)學(xué):圓的教學(xué)方案設(shè)計10-08

數(shù)學(xué)乘法教學(xué)方案設(shè)計10-08