- 相關(guān)推薦
二元一次方程與一次函數(shù)的教學(xué)方案
一、教材分析
《二元一次方程與一次函數(shù)》是北師大版教科書八年級(jí)(上)第七章第六節(jié)內(nèi)容.
本節(jié)內(nèi)容共安排2個(gè)課時(shí)完成,本節(jié)課為第1課時(shí).該節(jié)內(nèi)容是二元一次方程(組)與一次函數(shù)及其圖像的綜合應(yīng)用.通過探索“方程”與“函數(shù)圖像”的關(guān)系,培養(yǎng)學(xué)生數(shù)學(xué)轉(zhuǎn)化的思想,通過二元一次方程方程組的圖像解法,使學(xué)生初步建立了“數(shù)”(二元一次方程)與“形”(一次函數(shù)的圖像(直線))之間的對(duì)應(yīng)關(guān)系,進(jìn)一步培養(yǎng)了學(xué)生數(shù)形結(jié)合的意識(shí)和能力.本節(jié)要注意的是由兩條直線求交點(diǎn),其交點(diǎn)的橫縱坐標(biāo)為二元一次方程組的近似解,要得到準(zhǔn)確的結(jié)果,應(yīng)從圖像中獲取信息,確立直線對(duì)應(yīng)的函數(shù)表達(dá)式即方程,再聯(lián)立方程應(yīng)用代數(shù)方法求解,其結(jié)果才是準(zhǔn)確的.
二、學(xué)情分析
學(xué)生已有了解方程(組)的基本能力和一次函數(shù)及其圖像的基本知識(shí),學(xué)習(xí)本節(jié)知識(shí)困難不大,關(guān)鍵是讓學(xué)生理解二元一次方程和一次函數(shù)之間的內(nèi)在聯(lián)系,體會(huì)“數(shù)”和“形”間的相互轉(zhuǎn)化,從中使學(xué)生進(jìn)一步感受到“數(shù)”的問題可以通過“形”來解決,“形”的問題也可以通過“數(shù)”來解決.
三、目標(biāo)分析
1.教學(xué)目標(biāo)
知識(shí)與技能目標(biāo)
(1)初步理解二元一次方程和一次函數(shù)的關(guān)系;
(2)掌握二元一次方程組和對(duì)應(yīng)的兩條直線之間的關(guān)系;
(3)掌握二元一次方程組的圖像解法.
過程與方法目標(biāo)
(1)教材以“問題串”的形式,揭示方程與函數(shù)間的相互轉(zhuǎn)化,使學(xué)生在自主探索中學(xué)會(huì)不同數(shù)學(xué)知識(shí)間可以互相轉(zhuǎn)化的數(shù)學(xué)思想和方法;
(2)通過“做一做”引入例1,進(jìn)一步發(fā)展學(xué)生數(shù)形結(jié)合的意識(shí)和能力.
(3)情感與態(tài)度目標(biāo)
(1)在探究二元一次方程和一次函數(shù)的對(duì)應(yīng)關(guān)系中,在體會(huì)近似解與準(zhǔn)確解中,培養(yǎng)學(xué)生勤于思考、精益求精的精神.
(2)在經(jīng)歷同一數(shù)學(xué)知識(shí)可用不同的數(shù)學(xué)方法解決的過程中,培養(yǎng)學(xué)生的創(chuàng)新意識(shí)和變式能力.
2.教學(xué)重點(diǎn)
(1)二元一次方程和一次函數(shù)的關(guān)系;
(2)二元一次方程組和對(duì)應(yīng)的兩條直線的關(guān)系.
3.教學(xué)難點(diǎn)
數(shù)形結(jié)合和數(shù)學(xué)轉(zhuǎn)化的思想意識(shí).
四、教法學(xué)法
1.教法學(xué)法
啟發(fā)引導(dǎo)與自主探索相結(jié)合.
2.課前準(zhǔn)備
教具:多媒體課件、三角板.
學(xué)具:鉛筆、直尺、練習(xí)本、坐標(biāo)紙.
五、教學(xué)過程
本節(jié)課設(shè)計(jì)了六個(gè)教學(xué)環(huán)節(jié):第一環(huán)節(jié)設(shè)置問題情境,啟發(fā)引導(dǎo);第二環(huán)節(jié)自主探索,建立“方程與函數(shù)圖像”的模型;第三環(huán)節(jié)典型例題,探究方程與函數(shù)的相互轉(zhuǎn)化;第四環(huán)節(jié)反饋練習(xí);第五環(huán)節(jié)課堂小結(jié);第六環(huán)節(jié)作業(yè)布置.
第一環(huán)節(jié):設(shè)置問題情境,啟發(fā)引導(dǎo)
內(nèi)容:1.方程x+y=5的解有多少個(gè)?是這個(gè)方程的解嗎?
2.點(diǎn)(0,5),(5,0),(2,3)在一次函數(shù)y=的圖像上嗎?
3.在一次函數(shù)y=的圖像上任取一點(diǎn),它的坐標(biāo)適合方程x+y=5嗎?
4.以方程x+y=5的解為坐標(biāo)的所有點(diǎn)組成的圖像與一次函數(shù)y=的圖像相同嗎?
由此得到本節(jié)課的第一個(gè)知識(shí)點(diǎn):
二元一次方程和一次函數(shù)的圖像有如下關(guān)系:
(1)以二元一次方程的解為坐標(biāo)的點(diǎn)都在相應(yīng)的函數(shù)圖像上;
(2)一次函數(shù)圖像上的點(diǎn)的坐標(biāo)都適合相應(yīng)的二元一次方程.
意圖:通過設(shè)置問題情景,讓學(xué)生感受方程x+y=5和一次函數(shù)y=相互轉(zhuǎn)化,啟發(fā)引導(dǎo)學(xué)生總結(jié)二元一次方程與一次函數(shù)的對(duì)應(yīng)關(guān)系.
效果:以“問題串”的形式,啟發(fā)引導(dǎo)學(xué)生探索知識(shí)的形成過程,培養(yǎng)了學(xué)生數(shù)學(xué)轉(zhuǎn)化的思想意識(shí).
前面研究了一個(gè)二元一次方程和相應(yīng)的一個(gè)一次函數(shù)的關(guān)系,現(xiàn)在來研究?jī)蓚(gè)二元一次方程組成的方程組和相應(yīng)的兩個(gè)一次函數(shù)的關(guān)系.順其自然進(jìn)入下一環(huán)節(jié).
第二環(huán)節(jié)自主探索方程組的解與圖像之間的關(guān)系
內(nèi)容:
1.解方程組
2.上述方程移項(xiàng)變形轉(zhuǎn)化為兩個(gè)一次函數(shù)y=和y=2x,在同一直角坐標(biāo)系內(nèi)分別作出這兩個(gè)函數(shù)的圖像.
3.方程組的解和這兩個(gè)函數(shù)的圖像的交點(diǎn)坐標(biāo)有什么關(guān)系?由此得到本節(jié)課的第2個(gè)知識(shí)點(diǎn):二元一次方程和相應(yīng)的兩條直線的關(guān)系以及二元一次方程組的圖像解法;
(1)求二元一次方程組的解可以轉(zhuǎn)化為求兩條直線的交點(diǎn)的橫縱坐標(biāo);
(2)求兩條直線的交點(diǎn)坐標(biāo)可以轉(zhuǎn)化為求這兩條直線對(duì)應(yīng)的函數(shù)表達(dá)式聯(lián)立的二元一次方程組的解.
(3)解二元一次方程組的方法有:代入消元法、加減消元法和圖像法三種.
注意:利用圖像法求二元一次方程組的解是近似解,要得到準(zhǔn)確解,一般還是用代入消元法和加減消元法解方程組.
意圖:通過自主探索,使學(xué)生初步體會(huì)“數(shù)”(二元一次方程)與“形”(兩條直線)之間的對(duì)應(yīng)關(guān)系,為求兩條直線的交點(diǎn)坐標(biāo)打下基礎(chǔ).
效果:由學(xué)生自主學(xué)習(xí),十分自然地建立了數(shù)形結(jié)合的意識(shí),學(xué)生初步感受到了“數(shù)”的問題可以轉(zhuǎn)化為“形”來處理,反之“形”的問題可以轉(zhuǎn)化成“數(shù)”來處理,培養(yǎng)了學(xué)生的創(chuàng)新意識(shí)和變式能力.
第三環(huán)節(jié)典型例題
探究方程與函數(shù)的相互轉(zhuǎn)化
內(nèi)容:例1用作圖像的方法解方程組
例2如圖,直線與的交點(diǎn)坐標(biāo)是.
意圖:設(shè)計(jì)例1進(jìn)一步揭示“數(shù)”的問題可以轉(zhuǎn)化成“形”來處理,但所求解為近似解.通過例2,讓學(xué)生深刻感受到由“形”來處理的困難性,由此自然想到求這兩條直線對(duì)應(yīng)的函數(shù)表達(dá)式,把“形”的問題轉(zhuǎn)化成“數(shù)”來處理.這兩例充分展示了數(shù)形結(jié)合的思想方法,為下一課時(shí)解決實(shí)際問題作了很好的鋪墊.
效果:進(jìn)一步培養(yǎng)了學(xué)生數(shù)形結(jié)合的意識(shí)和能力,充分展示了方程與函數(shù)的相互轉(zhuǎn)化.
第四環(huán)節(jié)反饋練習(xí)
內(nèi)容:1.已知一次函數(shù)與的圖像的交點(diǎn)為,則.
2.已知一次函數(shù)與的圖像都經(jīng)過點(diǎn)A(—2,0),且與軸分別交于B,C兩點(diǎn),則的面積為().
(A)4(B)5(C)6(D)7
3.求兩條直線與和軸所圍成的三角形面積.
4.如圖,兩條直線與的交點(diǎn)坐標(biāo)可以看作哪個(gè)方程組的解?
意圖:4個(gè)練習(xí),意在及時(shí)檢測(cè)學(xué)生對(duì)本節(jié)知識(shí)的掌握情況.
效果:加深了兩條直線交點(diǎn)的坐標(biāo)就是對(duì)應(yīng)的函數(shù)表達(dá)式所組成的方程組的解的印象,培養(yǎng)了學(xué)生的計(jì)算能力和數(shù)學(xué)轉(zhuǎn)化的能力,使學(xué)生進(jìn)一步領(lǐng)悟到應(yīng)用數(shù)形結(jié)合的思想方法解題的重要性.
第五環(huán)節(jié)課堂小結(jié)
內(nèi)容:以“問題串”的形式,要求學(xué)生自主總結(jié)有關(guān)知識(shí)、方法:
1.二元一次方程和一次函數(shù)的圖像的關(guān)系;
(1)以二元一次方程的解為坐標(biāo)的點(diǎn)都在相應(yīng)的函數(shù)圖像上;
(2)一次函數(shù)圖像上的點(diǎn)的坐標(biāo)都適合相應(yīng)的二元一次方程.
2.方程組和對(duì)應(yīng)的兩條直線的關(guān)系:
(1)方程組的解是對(duì)應(yīng)的兩條直線的交點(diǎn)坐標(biāo);
(2)兩條直線的交點(diǎn)坐標(biāo)是對(duì)應(yīng)的方程組的解;
3.解二元一次方程組的方法有3種:
(1)代入消元法;
(2)加減消元法;
(3)圖像法.要強(qiáng)調(diào)的是由于作圖的不準(zhǔn)確性,由圖像法求得的解是近似解.
意圖:旨在使本節(jié)課的知識(shí)點(diǎn)系統(tǒng)化、結(jié)構(gòu)化,只有結(jié)構(gòu)化的知識(shí)才能形成能力;使學(xué)生進(jìn)一步明確學(xué)什么,學(xué)了有什么用.
效果:充分展示知識(shí)的發(fā)生、發(fā)展及應(yīng)用過程.對(duì)同學(xué)的回答,教師給予點(diǎn)評(píng),對(duì)回答得好的學(xué)生教師給予表揚(yáng)、鼓勵(lì).
第六環(huán)節(jié)作業(yè)布置
習(xí)題7.7
附:板書設(shè)計(jì)
六、教學(xué)反思
本節(jié)課在學(xué)生已有了解方程(組)的基本能力和一次函數(shù)及其圖像的基本知識(shí)的基礎(chǔ)上,通過教師啟發(fā)引導(dǎo)和學(xué)生自主學(xué)習(xí)探索相結(jié)合的方法,進(jìn)一步揭示了二元一次方程和函數(shù)圖像之間的對(duì)應(yīng)關(guān)系,從而引出了二元一次方程組的圖像解法,以及應(yīng)用代數(shù)方法解決有關(guān)圖像問題,培養(yǎng)了學(xué)生數(shù)形結(jié)合的意識(shí)和能力,充分展示了方程與函數(shù)的相互轉(zhuǎn)化.教學(xué)過程中教師一定要講清楚圖像解法的局限性,這是由于畫圖的不準(zhǔn)確性,所求的解往往是近似解.因此為了準(zhǔn)確地解決有關(guān)圖像問題常常把它轉(zhuǎn)化為代數(shù)問題來處理,如例2及反饋練習(xí)中的4個(gè)問題.
【二元一次方程與一次函數(shù)的教學(xué)方案】相關(guān)文章:
數(shù)學(xué)《二元一次方程的解法》教學(xué)教案設(shè)計(jì)10-09
初中數(shù)學(xué)《二元一次方程組》的教學(xué)教案10-08
初三數(shù)學(xué)《二元一次方程》教學(xué)教案設(shè)計(jì)10-08
一次函數(shù)教學(xué)方案設(shè)計(jì)10-08
初一數(shù)學(xué)下冊(cè)《二元一次方程組的解法--代入消元法》教學(xué)方案10-08
談?wù)劧淮畏匠探M中的消元方法10-26
《一次函數(shù)》數(shù)學(xué)教學(xué)教案10-09
《一次函數(shù)》教學(xué)教案(通用11篇)06-24